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Abstract—A phase-field model with a friction-type resistance in the kinetic equation for the martensite reorientation is proposed to simulate the cou-
pled magneto-mechanical behaviors of ferromagnetic shape memory alloy (FSMA). The phase-field simulation is able to capture the evolution of the
microstructures (martensite twins and magnetic domains) and the rate-independent hysteresis in the associated responses under various quasi-static
loading paths of controlling a mechanical stress or/and a magnetic field. Phase diagrams are constructed, by summarizing many simulation cases, to
demonstrate the dependence of the material state (martensite variant state and the level of magnetization along the external magnetic field) on the
magneto-mechanical loading. Particularly, the critical levels of the stress/field to trigger the martensite reorientation in the cases like Magnetic-Field
Induced Strain (MFIS) and field-assisted quasi-plasticity/pseudoelasticity (superelasticity) can be predicted, which agree with experimental
observations.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Phase-field method; Ferromagnetic shape memory alloy; Deformation twinning; Magnetic domains; Rate-independent hysteresis

1. Introduction

There have been intensive researches on magneto-
mechanical coupling behaviors of NiMnGa ferromagnetic
shape memory alloy (FSMA) since its Magnetic-Field
Induced Strain (MFIS) was discovered by Ullakko et al.
in 1996 [1]. The material can provide high-frequency
responses with a large strain of 6–10% [2–7] which make
the material have many potential applications such as actu-
ators and sensors [8,9]. The main physical mechanism
underlying the material’s large recoverable deformation is
the reorientation between the martensite variants (with
approximately tetragonal symmetry) whose short- and
long-axes have different magnetization susceptibilities
[2,3,5,10]. The mechanical and magnetic anisotropy of the
variants, correlating the deformation and the magnetiza-
tion, governs the material’s magneto-mechanical coupling
behaviors. For different purposes in various situations,
the martensite reorientation induced by rotating/non-rotat-
ing magnetic fields and/or uniaxial/multi-axial mechanical
stresses has been studied [10–18].

One of the key research issues is the driving force for the
martensite reorientation or the kinetics of the twin

boundary motion by which the martensite reorientation
takes place [3,11,12,19–21]. The driving force (also called
twinning stress rtw) means some energy dissipation during
the process and leads to rate-independent hysteresis in
responses during cyclic martensite reorientation for revers-
ible deformation (The hysteresis is so-called rate-indepen-
dent because it exists even though the external loading is
very slow or quasi-static) [13,14,10,15]. The rate-indepen-
dent hysteresis (quasi-static hysteresis) in responses implies
that there is some heat generated from the dissipated energy
during the martensite reorientation, which will increase sig-
nificantly the material’s temperature and change the behav-
iors of the specimen/system under high-frequency dynamic
cyclic loadings [22,23]. Therefore, it is important to under-
stand the effects of the twinning stress and the associated
hysteresis on the magneto-mechanical behaviors (particu-
larly the coupled microstructures including the martensite
twins and magnetic domains). It has been experimentally
observed that the twinning stress is related to microstruc-
tures (e.g., rtw = 1 MPa and 0.2 MPa for type I and II twin
boundaries, respectively) [24–28]. So, models capable of
describing/simulating the hysteretic microstructure evolu-
tion and the associated magneto-mechanical responses will
be helpful for both academic research and engineering
applications.

In literature, there are theoretical models focused on dif-
ferent aspects of magneto-mechanical behaviors of FSMA.
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These models can be mainly classified into three categories:
(1) Simple energy models [12,17,29,30] with energetic anal-
ysis in terms of macroscopic variables can predict the crit-
ical stress/field levels triggering martensite reorientation
and provide design criteria for obtaining reversible strain.
(2) Thermodynamic models [31–35] describing irreversible
processes with internal variables are able to capture the dis-
sipative phenomena (rate-independent hysteresis and the
loading-path dependence) and to provide detailed predic-
tions about the macroscopic behaviors under various load-
ing conditions. (3) Microstructural models [36–47] with the
principle of minimizing system’s total free energy are capa-
ble of studying the fundamental magneto-mechanical cou-
pling mechanisms at micro- (meso-) scales (coupling
martensite twins and magnetic domains) and associating
the microstructures with the macroscopic responses.

In this paper, we propose a phase-field model with a fric-
tion-type resistance in the kinetic equation for the martens-
ite reorientation in order to describe the hysteretic
microstructure evolution and the associated responses
under various quasi-static magneto-mechanical loading
paths. The remaining parts of this paper are organized as:
Section 2 introduces the theoretical framework of the
phase-field model while Section 3 reports the results of
the phase-field simulation on the microstructure evolutions
and response curves for some typical loading paths—MFIS
under fixed stress levels and field-assisted quasi-plasticity/
pseudoelasticity (superelasticity). In Section 4, the concepts
of the loading-path dependence relating to the hysteretic
magneto-mechanical behaviors are discussed with some
phase diagrams constructed by summarizing our simulation
for many cases. Finally, some conclusions are given in Sec-
tion 5.

In order to simplify the mathematical expressions in the
following model, vector and tensor notations are adopted:
boldface letters denote vectors or second-order tensors such
as g, m, e and r. Symbols such as C; I, denote fourth-order
tensors. Direct combination of vectors and tensors such as
mg and me represents the dot product corresponding to the
index notation migi and mieij respectively; particularly g2

represents gigi. The cross product of two vectors such as
m and g is denoted by m� g. The symbol “�” denotes ten-
sor product of tensors. When “�” is used with vectors like
g� g, the corresponding index notation is gigj. The symbol
“:” denotes the double contraction of two tensors, for
example r : e and C : e correspond to rijeij and Cijklekl

respectively. Other notations are: jgj represents the norm
of the vector g. ðgradgÞ2 corresponds to

P3
K¼1jrgK j

2 and
the nabla symbol “r” denotes the vector differential
operator.

2. Phase-field model

2.1. Phase-field variables and free energy

The state of the microstructure is described by two sets
of phase-field variables: (1) long-range order parameters
(LRO) for describing the martensite states, g ¼ gðr; tÞ ¼
ðg1ðr; tÞ; g2ðr; tÞ; g3ðr; tÞÞ; (2) two angles to describe the mag-
netization direction, polar angle h ¼ hðr; tÞ and azimuth
angle u ¼ uðr; tÞ (with a constant saturation magnetization
M s, the magnetization vector Mðr; tÞ ¼ M smðr; tÞ where m
is determined by the two angles of a spherical coordinate

system). The phase field variables are functions of time t
and a spatial vector r (containing the three coordinates of
a material point). The unit vectors of the magnetization
easy directions (short-axes) of the three tetragonal martens-
ite variants (etr

1 , etr
2 and etr

3 ) are mutually orthogonal due to
the tetragonal symmetry of the variants; they form a matrix
E ¼ ½ etr

1 etr
2 etr

3 � which can be used to describe the unit
vector of the magnetization easy direction of a material
point in a variant state g as

e0 ¼ Eg

jEgj ¼
Eg

jgj ð1Þ

The transformation strain of each tetragonal martensite
variant can be described by

etr
K ¼

at � ac

ac

I þ ct � at

ac

etr
K � etr

K ; ðK ¼ 1; 2; 3Þ ð2Þ

where I is the second order identity tensor and ac, at, ct are
the lattice parameters for the cubic parent phase, the long axis
and short axis of tetragonal martensite phases, respectively.
The total free energy F ¼ F ðr; tÞ includes the following terms:

F ¼ F chemical þ F gradient þ F elastic þ F ex�mechanical

þ F anisotropy þ F magnetostatic þ F exchange þ F Zeeman ð3Þ

where only F anisotropy is a functional of all the phase-field
variables (LRO parameters and the magnetization angles),
coupling the magnetic and mechanical properties.

(i) The chemical energy with the symmetry of the par-
ent cubic phase [42,48] is given as

F chemical ¼
Z

R3

a
2
g2 � b

3
ggsquare þ c

4
ðg2Þ2

� �
dr ð4Þ

where a, b, c are coefficients which are chosen to
provide the energy minima corresponding to the
three tetragonal martensite variants, and gsquare ¼
gsquareðr; tÞ ¼ ðg2

1ðr; tÞ; g2
2ðr; tÞ; g2

3ðr; tÞÞ.
(ii) The gradient energy is formulated as

F gradient ¼ B
Z

R3

ðgradgÞ2dr ð5Þ

where B is the gradient coefficient for the LRO
parameters.

(iii) The elastic energy is obtained based on Khachatur-
yan’s theory [49] for the strain energy of multiphase
alloys as

F elastic ¼
1

2

1

ð2pÞ3
Z

R3

~e0 : ~r0� � n~r0X~r0�n
� �

dk; ðk–0Þ

ð6Þ
where k is a reciprocal spatial vector and n ¼ k=jkj;
~e0 ¼ ~e0ðk; tÞ ¼

R
R3 e0ðr; tÞe�ikrdr is the Fourier trans-

form of the strain tensor of a stress-free state

e0ðr; tÞ ¼
P3

K¼1e
tr
KgKðr; tÞ; ~r0 ¼ C : ~e0, X ¼ I=G� n

�n=½2Gð1� vÞ�, C ¼ ½2vG=ð1� 2vÞ�I � Iþ 2G is the
elastic modulus tensor, I is the fourth order identity
tensor, G is the shear modulus and v is Poisson’s
ratio; The asterisk indicates the complex conjugate.

(iv) The external mechanical energy (mechanical poten-
tial) is given as

F ex�mechanical ¼ �
Z

R3

rex : edr ð7Þ
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