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a b s t r a c t

An analytical and numerical study of the dynamic motion of a conical frustum over a planar surface is

presented resulting to a non-linear system of ordinary differential equations. Wobbling and rocking

components of motion are discussed in detail concluding that, in general, the former component

dominates the latter. For small inclination angles an asymptotic approximation of the angular velocities

is possible, revealing the main characteristics of wobbling motion and its differences from rocking.

Connection is made of the analysis with the behavior of the ancient classical columns, whose three

dimensional dynamic response challenges the accuracy of the two dimensional models, usually applied

in practice. The consideration of such discrete-blocky systems can benefit from the present study,

through qualitative results and benchmarks for more complicated numerical methods, like the Distinct

Element Method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The non-holonomic problem of a symmetric body by revolu-
tion, rolling on a planar surface, was first formulated by Routh in
1868 [1]. Since then, a significant number of papers appeared on
this subject, focusing mostly on the study of the motion of a thin
disk on a horizontal plane. The elaboration of the problem of the
thin disk is presented in most classical textbooks of Dynamics
[2–5] providing to the readers a typical example of non-
holonomic motion. Noticing the early works of Appell [6] in
1900 (cf. also Korteweg [7]) and Gallop [8] in 1904, where analytic
solutions are given in terms of Gauss hypergeometric and
Legendre functions, we pass to the corps of papers of the current
decade. The papers of O’Reilly [9], Kuleshov [10], Paris and Zhang
[11], Kessler and O’Reilly [12], Borisov et al. [13], Le Saux et al.
[14] provide a deep insight to the dynamic behavior of the thin
disk. Equally important for the present study are also the papers
of Koh and Mustafa [15] and Batista [16], which discuss the
motion of a disk of finite thickness on a planar surface. In the
latter papers the equations of motion of a cylindrical drum are
derived and numerical simulations are performed.

In the present paper we deal with the case of a conical frustum,
rolling on a rough horizontal surface. Using for the description of
motion the Lagrange formulation, we distinguish between the
wobbling and the rocking of the frustum and comment exten-
sively on these components of motion. Stability analysis reveals

the pure three dimensional character of the motion, while further
approximations of the angular velocities under small inclination
angles are elaborated to examine the main characteristics of the
motion of the frustum. Finally, an attempt is made to interpret the
dynamical behavior of ancient classical columns considering them
as conical frustums with slightly different radii.

2. Equations of motion of a conical frustum on a rough
horizontal plane

The formulation of the problem is based on the following
assumptions:

a. The body is a homogeneous, rigid conical frustum.
b. The contact with the horizontal plane is assumed punctual.

Notice that Kessler and O’Reilly [12] introduced a contact
moment for simulating a ‘flat’ contact. This additional complica-
tion is not considered here, because rolling friction is disregarded.

c. At any given time the body is in contact with its horizontal planar
base and only smooth transitions in time are considered.

2.1. Formulation of the system

The position of the body in the inertial frame O(XYZ) is
determined by the coordinates of the contact point P(XP, YP) and
by the Euler angles (j, y, c), where j is the precession angle, y
the inclination (nutation) angle and c the rotation about z-axis
(Fig. 2). For y¼0 the frustum comes into contact with the
horizontal plane by whole base. Hence, the motion is restricted in
the interval yA 0,p=2

� �
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If the frustum rolls without sliding then the velocity of the
contact point P(XP, YP) is:

VP ¼�R _c ð1Þ

where R is the radius of the base of the drum. Applying the
Frobenius criterion, it may be easily proven that constraint (1) is
non-holonomic.

Ground accelerations can also be considered by introducing
the additional inertia terms

_X PþR _c cosj¼ agr
X
_ugrðtÞ, _Y PþR _c sinj¼ agr

Y
_ugrðtÞ ð2Þ

where agr
X , agr

Y are two scalar quantities, constant in time, that
express the direction of the ground acceleration €ugrðtÞ.

Given the frictional law of the materials in contact (eg. Coulomb
friction), the estimation of the sliding velocity is feasible by
combining the velocity of the point P, regarded as a point of the
frustum, with the frictional forces developed at the contact.
However, this formulation extends the limits and the scope of the
present paper and it will not be pursued further hereafter.
Numerical and parametric studies that include sliding are, of course,
important for practical applications, as they supply quantitative
information to be used for design purposes, but add little to the
qualitative understanding of the basic dynamics of the system.

The angular velocity components of the body relative to C(x Z
z) are

ox ¼
_y

oZ ¼ _j siny

oz ¼ _j cosyþ _c ð3Þ

whilst the components relative to the central principal axes
system Cðx y zÞ are

ox ¼
_y coscþ _j sinysinc

oy ¼�
_y sincþ _j sinycosc

oz ¼ _j cosyþ _c ð4Þ

Notice the coincidence of oz and oz, because z¼ z.
The coordinates of the center mass of the conical frustum in

O(X Y Z) are given in terms of the contact point coordinates
P(XP,YP), by the following relations:

Xc ¼ XP�‘cosðaþyÞsinj
Yc ¼ YPþ‘cosðaþyÞcosj
Zc ¼ ‘sinðaþyÞ ð5Þ

where ‘¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þð1=4Þk2

1h2
q

, tan a¼(k1h/2R), k1 ¼ 2ðzcm=hÞ,

zcm ¼ ðð3b
2
þ2bþ1Þ=ðb2

þbþ1ÞÞðh=4Þ, b¼r/R,r and R are, respec-
tively, the radii of the upper and lower rim of the conical frustum
and h is its height (Fig. 1).

The velocity VC of the center of the mass of the frustum yields

_X C ¼
_X Pþ‘ _y sinðaþyÞsinj�‘ _j cosðaþyÞcosj

_Y C ¼
_Y P�‘ _y sinðaþyÞcosj�‘ _j cosðaþyÞsinj

_ZC ¼ ‘ _y cosðaþyÞ ð6Þ

2.2. Dynamic equations of motion

The kinetic and the potential energy of the drum are

T ¼
1

2
mV2

Cþ
1

2
xTICx

V ¼mgzC ð7Þ

where IC is the inertia tensor relative to Cðx y zÞ

IC ¼ IP�

1

4
k1mh2þmR2 0 0

0
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and k3 ¼

3
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þb2
þbþ1
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The inertia tensor IP expresses the inertia moments of the body
at the contact point P. For cylindrical drums it holds
k1¼k2¼k3¼b¼1.

Introducing the generalized coordinates q1¼j, q2¼y, q3¼c,
q4¼XP and q5¼YP the general form of the Lagrange equations for
non-holonomic systems are

d

dt

@ðT�VÞ

@ _qi

	 

�
@ðT�VÞ

@qi
�
X2

j ¼ 1

ljBji ¼ 0 ð8Þ

With li we denote the Lagrange multipliers, while

Bji ¼
@ non-holonomic constraint equation 0j0
� �

@ _qi

, resulting to :

fBjig ¼
1 0 0 0 Rcosf
0 1 0 0 Rsinf

 !
:

For convenience we introduce the following dimensionless
quantities:

ĥ¼
h

R
, t¼ t

ffiffiffi
g

R

r
, X̂ ¼

XP

R
, Ŷ ¼

YP

R
, ûgr ¼

ugr

R
, ð:Þu�

dð:Þ

dt
,

Îk ¼
Ik

mR2
, ôk ¼ok

ffiffiffi
R

g

s
, T̂ ¼

T

mgR
, V̂ ¼

V

mgR
, Ê¼

E

mgR

ð9Þ

where g is the acceleration of gravity and E the total energy of the
system.

According to Eq. (8), the equations of motion are written in
matrix notation

AUU¼ B ð10Þ

C

R

r

a

h

r

R

C

l

Fig. 1. The conical frustum: 3D and 2D view.
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