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a b s t r a c t

The main objective of this publication is to present an extended version of the Moment Distribution

Method (MDM) for the stability and non-linear second-order analysis of indeterminate beams and

framed structures made of beam-columns of symmetrical cross-section including the combined effects

of shear and bending deformations, axial loads, and semi-rigid connections. The proposed method along

each member has the following advantages: (1) it can be utilized in the first- and second-order analyses

(including buckling analysis) of indeterminate beams and framed structures made of beam-columns

with rigid, semi-rigid, and simple end connections; (2) the effects of semi-rigid connections are

condensed into the bending stiffness and fixed-end moments without introducing additional degrees of

freedom and equations of equilibrium; and (3) it is accurate, powerful, practical, versatile, and an

excellent teaching tool. Analytical studies indicate that shear deformations, semi-rigid connections, and

axial loads increase the lateral deflections and affect the internal moments and reactions of continuous

beams and framed structures. These effects must be taken into account particularly in slender

structures and when they are made of beam or columns with relatively low effective shear areas (like

laced columns, columns with batten plates or with perforated cover plates, and columns with open

webs) or with low shear stiffness (like short columns made of laminated composites with low shear

modulus G when compared to their elastic modulus E) making the shear stiffness GAs of the same order

of magnitude as EI/L2. These effects become even more significant when the external supports are not

perfectly clamped. Three comprehensive examples are included that show the effectiveness of the

proposed method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The slope-deflection method and the Hardy Cross method represent the starting points in the evolution and development of the
matrix stiffness method as it is known today [1]. The slope-deflection method was presented in 1915 by Wilson and Maney [2] in a
Bulletin from the University of Illinois at Urbana-Champaign as a general method to be used in the analysis of beam structures with rigid
joints subjected to transverse loads. Later, Hardy Cross [3,4] also from the University of Illinois at Urbana-Champaign proposed the first
numerical method used in the structural analysis of indeterminate rigid frames that he called ‘‘the moment distribution method’’. The
great merit of the Cross method is that it made possible the efficient and safe design of many buildings and rigid jointed frames over half
a century [5,6].

In the Cross method it is assumed that the rigid joints of frame members are initially fixed against rotation. The fixed-end moments
produced by external loads are computed first as well as the distribution and carry-over factors of each member. These fixed-end
moments are unbalanced at the joints of the original non-restrained structure. In order to have rotational equilibrium at each joint, the
moment is distributed proportionally to the corresponding member stiffness. These distributed moments are associated with the so-
called ‘‘carry-over’’ moments at the opposite ends of structural members. They are considered to be new incremental unbalanced
moments and the procedure repeats until the unbalanced moments become negligible. The true moments at the ends of all members are
the sum of all distributed moment increments. Initially, the Cross method assumes joint rotations only. However, for frames with joint
translations a more general scheme is used, which requires the application of the method successively by setting up a system of
equations with the joint translations or sways as unknowns.
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On the other hand, advances in composite materials of high resilience capacities and low ratio of shear to bending stiffness of section
as well as the need for lighter and stronger beams and columns have created a great interest in the shear effects and second-order
analysis of framed structures. The slope-deflection equations for Timoshenko beams including the effects of shear deformations and
transverse loads were developed by Bryant and Baile [7]. Previously, Lin et al. [8] had developed the slope-deflection equations for laced
and battened beam-columns including the effects of shear deformations, axial loads, and end rigid stay plates. The slope-deflection
equations for Timoshenko beams including the effects of shear and bending deformations, second-order P�D effects, and semi-rigid end
connections have been presented recently by Aristizabal-Ochoa [9,10] using and the classical stability functions.

The main objective of this publication is to present a new version of the classic moment distribution method for the first- and second-
order analyses (including stability) of framed structures made of beam-columns of symmetrical cross-section including the effects of:
(1) bending and shear deformations; (2) the shear component of the applied axial forces (Haringx’s Model); and (3) semi-rigid
connections at the ends of each member. Three comprehensive examples are included that show the effectiveness of the proposed
method and corresponding equations.

2. Structural model

2.1. Assumptions

Consider a 2-D prismatic beam–column that connects points J and K as shown in Fig. 1a. The element is made up of the beam–column
itself J0K0, and the flexural connections JJ0 and KK0 with bending stiffness kj and kk at ends J and K, respectively. It is assumed that the
beam–column J0K0 of span L bends about the principal axis of its cross-section with a moment of inertia I, effective shear area As, and:
(1) is made of a homogeneous linear elastic material with the Young and shear moduli E and G, respectively; (2) its centroidal axis is a
straight line; and (3) is loaded at both ends with P (axial load) along its centroidal axis.
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Fig. 1. Beam–column under end moments with semi-rigid connections: (a) structural model; (b) degrees of freedom, forces and moments in the plane of bending; and

(c) rotations at a cross-section and at ends A and B.

Nomenclature

As effective shear area of the beam–column cross-
section

E Young’s modulus of the material
G shear modulus of the material
L length of the beam–column JK
I principal moment of inertia of the beam–column

about its axis of bending
Mj and Mk bending moments (clockwise +) at ends J and K,

respectively
P applied axial load at J and K (+compression,

�tension)
Pcr critical axial load
Pe¼p2EI/L2 euler load
Rj and Rk stiffness indices of the flexural connection at J and K,

respectively

u(x) lateral deflection of the beam–column center line
b¼ 1=ð1þP=ðGAsÞÞ shear reduction factor
D sway of end K with respect to end J
kj and kkflexural stiffness of the end connections at J and K,

respectively
l EI/(GAs)
rj and rkfixity factors at J and K of beam–column JK,

respectively
c(x) rotation of the cross-section due to bending alone as

shown by Fig. 1c
cj0 and ck0 bending rotations of cross-sections at ends J0 and K0

with respect to cord J0K0, respectively

f¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9P=ðbEI=L2Þ9

q
stability function in the plane of bending

yj and yk rotations of ends J and K due to bending with respect
to the vertical axis, respectively

G¼ 12ðEI=L2Þ=GAs bending to shear coefficient
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