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a b s t r a c t

The non-linear modal properties of a vibrating 2-DOF system with non-smooth (piecewise linear)

characteristics are investigated; this oscillator can suitably model beams with a breathing crack or

systems colliding with an elastic obstacle. The system having two discontinuity boundaries is non-

linearizable and exhibits the peculiar feature of a number of non-linear normal modes (NNMs) that are

greater than the degrees of freedom. Since the non-linearities are concentrated at the origin, its non-

linear frequencies are independent of the energy level and uniquely depend on the damage parameter.

An analysis of the NNMs has been performed for a wide range of damage parameter by employing

numerical procedures and Poincaré maps. The influence of damage on the non-linear frequencies has

been investigated and bifurcations characterized by the onset of superabundant modes in internal

resonance, with a significantly different shape than that of modes on fundamental branch, have been

revealed.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The classical modal analysis in linear dynamics can be
extended to non-linear systems governed by smooth equations
by introducing the concept of non-linear normal modes (NNMs).
According to the classical definition given by Rosenberg [1,2], a
NNM of an undamped system is defined as a synchronous
periodic oscillation where all generalized coordinates of the
system reach their extreme values or pass through the zeros
simultaneously. The NNMs of a system are important because, in
analogy to linear theory, resonance in forced systems typically
occurs in the neighborhood of NNM frequencies. Hence, knowl-
edge of the normal modes of a non-linear system can provide
valuable insight regarding the position of its resonances, a feature
of considerable engineering importance. Moreover, since the
number of normal modes of a non-linear system may exceed its
degrees of freedom (superabundant NNMs), certain forced reso-
nances are essentially non-linear and have no analogies in linear
theory; in such cases a linearization of the system might not be
possible, or might not provide all the possible resonances that can
be experienced.

In recent years, this item has revealed its importance also for
piecewise-smooth mechanical systems (PSS): these systems are
governed by sets of ordinary differential equations, which are

smooth in regions of phase space; smoothness is lost as
trajectories cross the boundaries between adjacent regions
(discontinuity boundaries). Much effort in science and engineering
has focused on these kinds of problems [3]. Typical mechanical
applications include: oscillators colliding with a deformable or
rigid stop [4,5], block assemblies connected by no-tension springs
[6], beams with breathing cracks [7–10] and stick-slip mechanical
systems with friction [11,12].

Particular attention has been devoted to the investigation of
the non-linear modal properties of these systems. To this end, the
classical Rosenberg’s definition has been extended, to make it
suitable for non-conservative and non-smooth systems: NNM is
then defined as any periodic motion in which all generalized
coordinates vibrate without necessarily passing through the zeros
simultaneously [9,13]. Important contributions to the under-
standing of NNMs from a general point of view can be found in
[8,14–21].

In a recent study [13], a discrete model of a beam with a
breathing crack, an example of a non-linearizable system, has
been dealt with using the asymptotic method of Lindstedt–
Poincaré and limiting the analysis to the fundamental branch
solutions and their stability. In [22], a similar system was then
numerically investigated by means of the Poincaré map. Particular
attention was given to the onset of superabundant modes along
the backbones of the two fundamental modes.

The present paper aims to give a general picture of the basic
non-linear dynamics of these systems. In particular the onset of
superabundant modes at internal resonances will be character-
ized and it will be shown that the specific features of each
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bifurcation scenario peculiarly depend on the kind of the related
internal resonance. The non-linear modal characteristics of a
general 2-DOF piecewise-smooth mechanical system with two
damage parameters are analyzed; the system can model the
dynamics of an asymmetrically multi-cracked cantilever beam
vibrating in bending and hence exhibiting a bilinear stiffness. The
phase space of this dynamical system is divided into four regions
by two discontinuity boundaries; in each region the system has a
different smooth functional form of the vector field. Since the
vector field is the same in the adjacent regions, whereas its
Jacobian changes due to the bilinear stiffness, the problem
belongs to a continuous PSS, according to the definition widely
used in the literature [3]. The system at hand encompasses, as
particular cases, the oscillators with a single damage parameter
investigated in [9,13,22].

2. Mechanical system

2.1. Model description

The investigated system, Fig. 1, consists of a 2-DOF oscillator:
two masses, m1 and m2, are connected by two piecewise linear
springs of undamaged stiffness k1 and k2, and reduced stiffness
(1�e1)k1 and (1�e2)k2, (0reio1): the relevant restoring forces
exhibit the bilinear behavior shown in Fig. 1b.

Assuming the displacements x1 and x2 as Lagrangian coordi-
nates, the stiffness of the non-linear springs can be represented,
Fig. 1b:

kbil,i ¼ kið1�HðZiÞeiÞ, HðZiÞ ¼
1 ZiZ0

0 Zio0
i¼ 1,2

(
ð1Þ

where e1 and e2 are the damage parameters, H is the Heaviside
function, and Z1¼x1 and Z2¼x2�x1. Therefore, Fig. 1c, in the
configuration plane (x1, x2) four regions with different stiffness
properties are delimited by the following two boundaries:

S1 : ¼ fxAR2 : Z1ðxÞ ¼ 0g, S2 : ¼ fxAR2 : Z2ðxÞ ¼ 0g ð2Þ

As shown in Fig. 1c, in regions I and III the system exhibits only
one spring with reduced stiffness at a time, whereas in regions II
and IV the springs are both damaged or both undamaged.

2.2. Equations of motion

With reference to Fig. 1, the following equations of motion in
time domain are found:

m1 €x1þ½kbil,1þkbil,2�x1�kbil,2x2 ¼ 0

m2 €x2þkbil,2x2�kbil,2x1 ¼ 0

(
ð3Þ

Introducing a state vector y�(y1,y2,y3,y4) and gathering the
state variables of displacement and velocity of each mass
(y1 ¼ x1, y2 ¼ _x1,y3 ¼ x2, y4 ¼ _x2), Eqs. (3) can be written as

_y1 ¼ y2

_y2 ¼ ð�ðkbil,1þkbil,2Þy1þkbil,2y3Þ=m1

_y3 ¼ y4

_y4 ¼ ðkbil,2y1�kbil,2y3Þ=m2

8>>>><
>>>>:

ð4Þ

In the following, mass and stiffness ratios will be denoted:

m2

m1
¼ a,

k2

k1
¼ b ð5Þ

The NNMs exhibited by the system are analyzed in the
configuration space for different values of a and b and by means
of procedures based on continuation techniques and Poincaré
maps. The relevant bifurcations are studied as a function of the
damage parameters e1 and e2.

3. Normal modes

3.1. Linear normal modes (LNM)

For e1¼e2¼0 the system is linear and exhibits the two LNMs
u01 and u02: the relevant modal curves are straight lines passing
through the origin, and their frequencies are

o2
01,02 ¼

ðaþbþabÞ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbþabÞ2�4ab

q
2a

k1

m1
ð6Þ

The frequency ratio o02/o01 for the undamaged oscillator will
be denoted as r0 and, according to Eq. (6), is given by

r0 ¼
o02

o01
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbþabÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbþabÞ2�4ab

q
2

ffiffiffiffiffiffi
ab

p
vuut

ð7Þ

The parameter r0 uniquely depends on the nondimensional
mass and stiffness parameters a and b of Eq. (5).

As it will be shown, the dynamic behavior exhibited by the
system when e1a0 and/or e2a0 is strongly affected by r0. In
the subsequent analyses the following remarkable cases will be
considered:

(i) r0¼1.95, below the (2:1) internal resonance;
(ii) r0 ¼ 1=2ð3þ

ffiffiffi
5
p
Þffi2:62, below the (3:1) internal resonance.

This value is exhibited by a shear-type frame with equal
masses and equal stiffness;
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Fig. 1. (a) System model; (b) piecewise restoring forces (Z1¼x1; Z2¼x2�x1); and (c) discontinuity boundaries in the physical plane (x1, x2).
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