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Abstract—Unusual mechanical behavior of cracks in nanoscale ferroelectrics, where spontaneous polarization characteristically forms closed-flux
vortices, is investigated using state-of-the-art real-space phase-field modeling based on the Ginzburg–Landau theory. An anomalously large tough-
ening effect is revealed in nanoscale ferroelectrics due to drastic stress release near the crack tip, which is almost one order of magnitude larger in
stress intensity than that observed in macroscale materials. Such anomalous toughening is attributed to an unusual switching behavior of the polar-
ization vortices in nanoscale ferroelectrics, which is no longer localized near the crack tip as in macroscale ferroelectrics, but expands to the entire
structure through the splitting and multiplication of vortices. We further demonstrate that this local-to-global switching is intrinsically induced by
strong cross-coupling between the ferroelectric polarization and mechanical strain that concentrates to the electro-elastic energy, not only in the
vicinity of crack tip, but also to each polarization vortex due to its inhomogeneous distribution. Our finding provides a novel insight into nanoscale
polarization vortices and leads to an entirely new strategy for the tailoring and improvement of fracture toughness in ferroelectric materials by
engineering the microstructure of polarization vortices.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric materials such as PbTiO3 and Pb(Zr,Ti)O3

solid solutions have been drawing continuous attention and
interest due to their large ferroelectricity and related elec-
tromechanical properties such as a large piezoelectric
response and high dielectric constant, and have thus been
widely used for technological devices including nonvolatile
random access memory (FeRAM) devices, sensors, actua-
tors and transducers in micro(nano)electromechanical sys-
tems (MEMS/NEMS) [1–4]. However, their inherent
brittleness and low fracture toughness often lead to critical
failure and malfunction of such devices [5–7] through the
propagation of cracks that are typically formed during
the growth or production processes [8–12].

The mechanical behavior of cracks in ferroelectric
materials is generally complicated due to coherent
nonlinear interactions between the mechanical and electric
fields [13–15]. The intense stress concentration with the
form of a singular field at a crack tip and significant cross-
coupling between the ferroelectric spontaneous polarization

and mechanical stress/strain induces local polarization
switching near the tip [16–27], which often shields (or
anti-shields) the crack from applied mechanical loads
and thus apparently toughens (or weakens) these ferro-
electric materials [17,18,25,27]. Therefore, an understand-
ing of the mechanical behavior of cracks in ferroelectric
materials is of central importance, not only for the reli-
ability of ferroelectric devices, but also with respect to
fundamental physics and mechanics. To date, the mechan-
ical behavior of cracks and the polarization switching
characteristics have been intensively studied both
experimentally and theoretically [16–27], which has mostly
elaborated on macroscale ferroelectrics where the cracks
are simply assumed to behave in a uniform (monodomain)
polarization.

Recent significant advances in manufacturing technol-
ogy have enabled us to obtain nanostructured ferroelectric
materials, such as thin films, nanowires, and nanodots. In
such nanoscale ferroelectrics, the charge that appears on
a surface due to the termination of electric dipoles gener-
ates a counter electric field inside the nanostructures
(depolarization field) [4], which destabilizes the normal
rectilinear polarization and instead leads to the formation
of polarization vortices [28–43]. The clockwise-
and-counterclockwise arrangement of polarization vortices
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that emerge to cover the entire structure of the nanoscale
ferroelectric and the spatially continuous rotation of polar-
ization vectors no longer allow us to understand the ferro-
electric properties on the basis of conventional domains
[40,41]. In addition, the formation of polarization vortices
induces a complex internal stress distribution in nanoscale
ferroelectrics, which is attributed to the coupling between
polarization and stress [43]. Therefore, in the presence of
a crack, such a spatially inhomogeneous polarization field
of vortices may interact with the singular stress field near
the crack tip in a totally different way from that with
nearly-homogeneous (single-domain) polarization in mac-
roscale ferroelectrics, and which would further complicate
the mechanical behavior of crack. However, the mechani-
cal behavior of cracks in nanoscale ferroelectrics has not
yet been clarified.

The Ginzburg–Landau theory was proposed on the basis
of the fundamental principles of thermodynamics and kinet-
ics to describe the dynamic behavior of ferroelectrics using a
polarization vector as an order parameter [44–50]. Phase
field modeling based on the Ginzburg–Landau theory has
been commonly used for the study of cracks in ferroelectric
materials [51–54] because phase field modeling achieves self-
consistency of the electrostatic and elastic interactions,
which is essential to describe the electric and mechanical
behavior near a crack tip [25,27,51–54]. In recent years,
phase field modeling has been extended for simulation in
real-space [51,55–61], which has enabled us to address any
ferroelectric structures with arbitrary geometries and
boundary conditions, and has successfully reproduced the
polarization vortices in nanoscale ferroelectrics [40,41].
Therefore, real-space phase-field modeling is suitable and
effective for the study of cracks in nanostructured
ferroelectrics.

In this study, we investigate the mechanical behavior of
cracks in nanoscale ferroelectrics, where a complicated cou-
pling between the polarization vortices and singular stress
field is expected, using real-space phase-field simulations
based on the Ginzburg–Landau theory. We find a dramat-
ically large toughening effect in the nanoscale ferroelectrics.
The anomalous toughening is shown to be due to an unu-
sual switching of polarization vortices that is no longer
localized near the crack tip, but expands to the entire nano-
scale ferroelectrics. We further demonstrate that a strong
cross-coupling between polarization and mechanical strain
plays a central role in the unusual switching of the polari-
zation vortices.

2. Computational details

2.1. Real-space phase-field model for ferroelectrics based on
the Ginzburg–Landau theory

The mechanical and ferroelectric behavior of cracks in
ferroelectric nanocomponents is studied using real-space
phase-field modeling based on the Ginzburg–Landau the-
ory. The present phase-field modeling achieves self-consis-
tency of the electrostatic and elastic interactions, which is
essential to describe the electric and mechanical behavior
near a crack tip [25,27,51–54]. In the phase-field model
of ferroelectric materials, the polarization vector
P = (P1, P2, P3) is taken as the order parameter to

describe the free energies of ferroelectric systems. The
total free energy of the ferroelectric system F, can be
described by [62]:

F ¼
Z

V
fdV ¼

Z
V
ðfLand þ fgrad þ felas þ fcoup þ felecÞdV ; ð1Þ

where f, fLand, fgrad, felas, fcoup, and felec denote the total
free energy density, the Landau energy density, the
gradient energy density, the elastic energy density, the cou-
pling energy density, and the electrostatic energy density,
respectively. V is the entire volume of the ferroelectric
system.

The Landau energy density is expressed by a six-order
polynomial of the spontaneous polarization [63] as:
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where a1 is the dielectric stiffness, and a11, a12, a111, a112,
and a123 are higher-order dielectric stiffness. The dielectric
stiffness a1 is given a linear temperature dependence based
on the Curie–Weiss law:

a1 ¼ ðT � T 0Þ=2j0C0; ð3Þ
where T and T0 denote the temperature and the Curie–
Weiss temperature, respectively, C0 denotes the Curie con-
stant, and j0 is the dielectric constant of a vacuum [64]. The
gradient energy density [65] in the second term of Eq. (1) is
given by:
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where G11, G12, G44, and G044 are the gradient energy coef-
ficients, and Pi,j = oPi/oxj denotes the derivative of the ith
component of the polarization vector Pi, with respect to
the jth coordinate xj, and i,j = 1, 2, 3. The gradient energy
represents the energy penalty for inhomogeneous spatial
distribution of the polarization in a ferroelectric system,
such as domain walls. The elastic energy density is a pure
mechanical strain energy:
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where c11, c12, and c44 are the elastic constants, and eij is the
elastic strain. The fourth term of Eq. (1) represents the
energy density of piezoelectric coupling between the spon-
taneous polarization and mechanical strain, and is given
by [63]:
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