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Abstract—An effective mobility for non-equilibrium solute diffusion is introduced to develop a hyperbolic phase-field model of rapid solidification in
which long-range solute diffusion and short-range solute-redistribution are under local non-equilibrium conditions. At equilibrium, the model pro-
vides decoupling of bulk and interface properties. Far from equilibrium, the model predicts a transition from diffusion-limited growth to diffusionless
solidification at an interface velocity that is equal to the solute diffusion speed in liquid. At this critical velocity, the solute drag effect disappears
abruptly, being consistent with the previous local non-equilibrium model for the sharp interface. A comparison with other phase-field models is made
and an agreement between the present model predictions and the experimental results of rapid solidification of Si-9at.%As alloy is obtained.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The interaction between solute atoms and migrating
grain boundaries results in a retarding force, i.e. solute drag
[1]. Due to its particular importance (e.g. in design and pre-
paration of modern steels [2]), solute drag has been studied
extensively by experiments (e.g. Refs. [3,4]) and theories
(e.g. the classical solute drag models of Cahn [5] and
Hillert–Sundman [6]). It also plays one of the predominant
roles in solidification, such as interface kinetics [7,8] and
dendritic growth in undercooled melts [9].

For a migrating sharp interface upon rapid solidifica-
tion, solute drag effect can be either introduced completely
or excluded absolutely by the model with or without solute
drag [10,11]. As an intermediate case, a partial solute drag
model [12] can be proposed to reproduce better the experi-
mental results. By introducing the non-equilibrium solute
diffusion effect into the bulk liquid and the interface, the
local non-equilibrium models for the sharp interface
[13,14] are flexible enough to describe the transition from

the regime with solute drag at low growth velocities to
degeneration and abrupt absence of solute drag at high
growth velocities. An abrupt transition from diffusion-lim-
ited growth to diffusionless solidification is followed by a
complete disappearance of solute drag.

By introducing a phase field (/) that is constant (e.g. 0
or 1) in bulk phases and changes continuously (e.g. from
0 to 1) across the diffuse interface, phase-field modeling
avoids the complex front tracking procedure in sharp inter-
face models and becomes quite a powerful simulation tool
for the prediction of microstructure formations [15,16].
Assuming that solute diffusion is under local equilibrium
conditions for such diffuse interface, the transition from dif-
fusion-limited growth to diffusionless solidification is
accompanied by a gradual disappearance of solute drag
as the interface velocity increases to infinite [1,17,18].

In order to describe non-equilibrium solute diffusion, a
kinetic energy term a~J 2

B =2 is added to the classical free
energy density f [19]. Here~J B is the overall solute diffusion
flux and a ¼ ð@~l=@cÞv 2

m =V 2
D is a kinetic coefficient indepen-

dent on ~J B,1 in which ~l is the overall solute diffusion
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1 It must be pointed out that the kinetic energy term a~J 2
B =2 is different

to the dissipation term of solute diffusion which is also a quadratic
function of diffusion flux, e.g. the second term on the right hand side
of Eq. (21).
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potential, c is the overall solute molar fraction,2, V D is the
solute speed and vm the specific atomic volume is assumed
be the same for the solvent A and solute B. The classical para-
bolic solute diffusion equation [20] is modified by adding a
second derivative of c with respect to time t as follows [21],
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In the case of one-dimensional steady-state growth, a stan-
dard coordinate transformation @=@t! �V @=@z with V as
a constant interface velocity reduces the hyperbolic solute
diffusion equation Eq. (1) to:

�V
@c
@z
¼

D 1� V 2

V 2
D

� �
@2c
@z2 þ @D

@/
@/
@z

@c
@z þ @

@z D @2f
@c2

� ��1
@2f
@c@/

@/
@z

� �
; V < V D

@D
@/

@/
@z

@c
@z þ @

@z D @2f
@c2

� ��1
@2f
@c@/

@/
@z

� �
; V P V D

8>>><
>>>:

ð2Þ

Here sD ¼ D=V 2
D is the relaxation time of ~J B with D the

solute diffusion coefficient, and Mc ¼ Dð@2f =@c2Þ�1
is the

mobility for~J B. Eq. (2) shows that at V < V D , solute diffu-
sion occurs in bulk phases and within the diffuse interface.
At V P V D , the solute profile is homogeneous in bulk
phases where @/=@z ¼ 0 and @c=@z ¼ 0 but is inhomoge-
neous within the diffuse interface where @/=@z–0 [22,23].
This inhomogeneous solute profile however results in a
weak but still existent solute drag effect, being inconsistent
with the local non-equilibrium models [13,14] which have
already been verified by experiments. In order to show
the reason gives rise to this problem, Eq. (1) is reformulated

with the conservation law @c=@t ¼ �vm
~r �~J B as:
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where the first and second terms on the right hand side are
the long-range solute diffusion flux and, the third term is
the flux of short-range solute-redistribution [24,25]. One
can see that the non-equilibrium solute diffusion effect is
introduced into only long-range solute diffusion (i.e. the
second term on the right hand side of Eq. (3)) but not
simultaneously long-range solute diffusion and short-range
solute redistribution.

In this work, an effective mobility for non-equilibrium
solute diffusion is proposed to derive a hyperbolic phase-
field model for rapid solidification. Compared with the pre-
vious hyperbolic models [22,23] based on the so-called “ki-
netic energy approach” [19], the present work introduces
simultaneously the non-equilibrium solute diffusion effect
into long-range solute diffusion and short-range solute
redistribution, thus resulting in a sharp transition from
inhomogeneous solute profiles at low growth velocities to
homogeneous ones in bulk phases and within the diffuse
interface at high growth velocities. Noting that solute drag
happens in the case of an inhomogeneous solute dis-
tribution within the interface but disappears completely in

the case of a homogeneous one, the present model becomes
able to predict an abruptly concurrent occurrence of
diffusionless solidification and absence of solute drag.

2. Effective mobility for non-equilibrium solute diffusion

Let us start from the Maxwell–Cattaneo equation for
non-equilibrium solute diffusion [26].
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which can be rewritten as
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Here ~li is the solute diffusion potential, the superscript or
subscript “S” and “L” denote the variable in solid and liquid,
respectively. Compared with the classical irreversible

thermodynamics, an extra kinetic contribution ð@~J i
B=@tÞ

ai=vm is enclosed into Eq. (5). The so-called kinetic energy
approach [19] in the case of a prescribed kinetic mobility
for solute diffusion changes the thermodynamic state.

On the other hand, the kinetic mobility for solute diffu-
sion may change from its standard definition ðDi=vmÞ
ð@~li=@ciÞ�1

to an effective one ðDi=vmÞð@~li=@ciÞ�1

1þ vm= V i
D

2
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if the thermodynamic

driving force ~r~li is given; see Eq. (6). The kinetic mobility
is changed in the case of a prescribed thermodynamic state.
If the driving force is taken as the gradient of solute molar

fraction ~rci , the non-equilibrium solute diffusion effect
changes the diffusion coefficient Di to a generalized effective
diffusion coefficient for non-steady growth Di½1þ
ðvm= V i

D
2Þð1=~rciÞð@~J i

B=@tÞ�3.
The “effective mobility approach” provides an alterna-

tive choice to describe non-equilibrium solute diffusion.
This approach is adopted in the next Section 3 to derive
the present hyperbolic phase-field model. For comparison,
the previous hyperbolic phase-field model [23] derived from
the kinetic energy approach is described concisely in
Appendix A.

3. The model

3.1. Total free energy

Let us consider an isothermal solidification of a binary
alloy in a closed system. The overall solute molar fraction
c is:

2 The definitions of molar fraction, site fraction and concentration are
distinguished clearly in recent work of Fischer and Svoboda [20].
Accordingly, the overall solute concentration is c=vm (mol m�3) and
the overall solute molar fraction is c.

3 It is straightforward to obtain that the generalized diffusion
coefficient Di½1þ ðvm= V i

D
2Þð1=~rciÞð@~J i

B=@tÞ� reduces to the effective
diffusion coefficient [26] in the case of one-dimensional steady-state
growth.

H. Wang et al. / Acta Materialia 90 (2015) 282–291 283



Download	English	Version:

https://daneshyari.com/en/article/7880387

Download	Persian	Version:

https://daneshyari.com/article/7880387

Daneshyari.com

https://daneshyari.com/en/article/7880387
https://daneshyari.com/article/7880387
https://daneshyari.com/

