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In earlier work [P.J. Aston, R. Shail, The dynamics of a bouncing superball with spin, Dyn. Sys. 22 (2007)

291–322] the problem of the possible back and forth motion of a superball thrown spinning onto a

horizontal plane was considered in detail. In this paper the problem is extended to include a vertical

wall. In particular motion of the superball where it bounces alternately on the floor and the wall several

times is considered. Using the same physical model as in our previous work, a non-linear mapping is

derived which relates the launch data of the (n+1)th floor bounce to that of the n th. This mapping is

analysed both numerically and theoretically, and a detailed description is presented of various possible

motions. Regions of initial conditions which result in a specified number of bounces against the wall are

also considered.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In a previous paper [1] two of the present authors considered
in detail the mechanics of a superball bouncing back and forth on
a rough horizontal plane. Reversals in direction in the horizontal
motion of the ball result from the application of a tangential law
of restitution at the point of impact of the ball and the plane. This
concept was first introduced by Garwin [2] who used a tangential
coefficient of restitution of one, which is not physically realistic.
Garwin’s model was modified by Cross [3] who employed a
tangential coefficient of restitution a satisfying 0oao1, with the
horizontal velocity of the point of impact of the ball being
reversed and reduced in magnitude by a factor of a in the impact.
Further details of the physics of this model are given in [1],
together with references to other theoretical and experimental
work.

All who have experimented with a superball will have at
sometime bounced the ball on the floor, followed by a bounce on a
vertical wall. If the bounce on the wall occurs while the ball is still
rising, it gives the ball some backspin, so that the direction of
motion is reversed at the next bounce on the floor resulting in the
ball hitting the wall a second time. With practice, the ball can be
made to bounce between the floor and wall several times. Such
motion is illustrated in the animations in Figs. 2, 3, 5, and 11. It is
our purpose to give a theoretical investigation of such motions
and the non-linear mappings which they engender. To this end we
establish in Section 2 the basic equations governing the model.

Essentially, each journey of the ball from floor to wall to floor,
assumed to take place in the same vertical plane, comprises four
events: (i) after launch from the floor the ball pursues a parabolic
trajectory until it hits the wall, (ii) the rebound from the wall,
(iii) the parabolic trajectory of the return journey to the floor and
(iv) the impact with the floor which provides the launch data for
the next excursion of the ball. The result of this analysis is the
derivation of a non-linear mapping which relates the floor launch
data (linear and angular velocity components of the ball and
distance from the wall) to the same parameters after the next
bounce on the floor.

In Section 3 some numerical trajectories of the non-linear
mapping are computed and examples given of motions with
various numbers of floor to wall bounces. Also illustrated are the
parameter spaces of initial conditions required to produce various
numbers of bounces off the wall. In Section 4 a scaling invariance
is introduced which rewrites the non-linear map of Section 2 in
terms of suitable canonical coordinates. This results in a three-
dimensional non-linear map, a reduction in dimension by one
from the original system.

Section 5 presents some numerical results for the regions of
initial conditions which will result in a given number of bounces
against the wall in the canonical variables, analogous to those of
Section 3 for the original variables. The next two sections of the
work analyse these numerical results in some detail, focussing on
the behaviour of the mapping on two planes which comprise
boundaries of the region of interest. The paper concludes by
proposing a number of further questions related to the problem.

Before continuing to our analysis of the problem we have just
described, we note that there are limitations to the model of the
bounce of the superball that we use. It is recognised that the
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model introduced in [3] which was subsequently used in [1] and
the present paper is an oversimplification of the physics of
superball impact. Thus, the tangential coefficient of restitution a
is known not to be constant, but to depend on factors such as the
speeds, the angles of incidence and the angular velocities of the
bodies in collision (see, for example, Cross [3,4], Labous et al. [5],
Dong and Moys [6], Sondergaard et al. [7], although we note that
the latter two studies were concerned with steel balls, not
superballs). Further there is a number of competing models of the
impact process which attempt to describe the slip and elastic
restitution occurring over the area of contact of the impinging
bodies. For example, Maw et al. [8] study in detail the elastic
displacements of colliding spheres during impact, giving parti-
cular attention (via a classical elasticity mixed boundary-value
problem) to the tangential tractions generated in the collision.
Stronge et al. [9] model the collision by again considering the
elastic impact region, which they represent by a deformable
particle, the remainder of the system being treated as a rigid body.
A very different approach to collision dynamics is that of Bibó
et al. [10], who construct a mechanical model of a ball which can
exhibit the back and forward bouncing studied in [1]. Basically
they consider the ball to have a rigid core attached by torsion
springs to an outer casing, each component being capable of
rotation about a common axis. The outer layer mimics the surface
layer of the ball whilst the inner part can store energy even if the
outer layer is reduced to rest during the bounce. These and other
models may be able to give a more realistic description of the
bouncing process. However, despite the shortcomings of the Cross
model of a bounce, it has the merit of enabling progress to be
made in the analytical description of the title problem of this
paper, and hence is to be preferred to other models which would
lead to intractable mathematical and numerical situations.

2. The model equations

We consider the motion of a solid homogeneous superball of
mass m and radius a, bouncing back and forth under gravity
between a horizontal floor (f) and a vertical wall (w). The motion
is assumed to be two-dimensional, and horizontal and vertical
axes Ox and Oy are taken in the plane of motion of the centre, C, of
the ball such that the horizontal floor is given by y¼�a,
�arxo1 and the vertical wall by x¼�a, �aryo1. With this
choice of coordinates, the ball centre C is restricted to the positive
quadrant of the plane (see Fig. 1).

Since collisions occur at two separate surfaces it is essential to
formulate a clear notation for describing the progress of the ball.
Let un, vn be the horizontal and vertical velocity components of
the centre of the ball immediately after the nth bounce on the floor,
and let on, measured positive in the direction from Ox to Oy, be
the angular velocity of the ball. Clearly vn40 by definition and we
require uno0 in order for the ball to proceed towards the wall.
Further, let xn+a denote the horizontal distance of the ball centre
C from the wall at the nth bounce on the floor, and yn+a the height
of C above the floor at the subsequent impact with the wall. After
launch from the floor the centre of the ball describes a parabolic
trajectory, and elementary mechanics shows that

yn ¼�
xn

un
vnþ

gxn

2un

� �
: ð1Þ

Immediately prior to impacting the wall the linear and angular
velocity components of the ball are denoted by uw-

n , vw-
n and ow-

n ,
and immediately after the collision with the wall these compo-
nents are written uwþ

n , vwþ
n and owþ

n . The ball now returns to the
floor, pursuing a parabolic trajectory, and reaches it with
component velocities uf-

n , vf-
n and of-

n , the centre C having travelled
a horizontal distance xn + 1. Finally, the ball rebounds from the
floor at the (n+1)th bounce with component velocities un + 1, vn +1

and onþ1. Fig. 1 shows the trajectories of the centre C and the
linear and angular velocities of the ball immediately after three
successive impacts with the floor and wall structure.

During the flight of the ball between impacts any viscous or
aerodynamic effects that might arise from the motion of the ball
are assumed to be small and so are ignored; it follows that in any
parabolic segment of the motion, the angular and horizontal
velocities remain constant. In order to describe the interaction of
the superball with the wall after the nth bounce on the floor, we
introduce normal and tangential coefficients of restitution, ew and
aw, both in the range (0,1), with a similar notation for the floor,
the subscript f replacing w. ew is the classical Newtonian
coefficient whence, in the notation of the previous paragraph,

uwþ
n ¼�ewuw-

n ¼�ewun: ð2Þ

In the direction tangential to the wall it is assumed, following
Cross [3] and Aston and Shail [1], that the tangential velocity of
the ball at the point of contact Pw with the wall is reversed and
reduced in magnitude by a factor aw. This condition gives

vwþ
n �aowþ

n ¼�awðv
w-
n �aow-

n Þ ¼�awðv
w-
n �aonÞ, ð3Þ

where

vw-
n ¼ vnþ

gxn

un
: ð4Þ

A third model equation follows from the conservation of angular
momentum in the bounce; taking moments about Pw, which
obviates the need to introduce the impulsive friction and normal
reaction at Pw, we have

2
5 ma2owþ

n þmavwþ
n ¼ 2

5ma2onþmavw-
n : ð5Þ

Eqs. (3)–(5) give
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and (6) and (7), together with (2), furnish the launch velocities for
the rebound from the wall.

We now consider the return of the ball to the floor and its
rebound. The initial height of the centre of the ball above Ox is yn,
given by (1), and its horizontal range is xn +1. Again, elementary
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Fig. 1. The trajectory of the ball centre C and three successive impacts.
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