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a b s t r a c t

The pulsatile flow of a two-phase model for blood flow through axisymmetric and asymmetric stenosed

narrow arteries is analyzed, treating blood as a two-phase model with the suspension of all the

erythrocytes in the core region as the Herschel–Bulkley material and plasma in the peripheral layer as

the Newtonian fluid. The perturbation method is applied to solve the resulting non-linear implicit

system of partial differential equations. The expressions for various flow quantities are obtained. It is

found that the pressure drop, plug core radius, wall shear stress increase as the yield stress or stenosis

height increases. It is noted that the velocity increases, longitudinal impedance decreases as the

amplitude increases. For asymmetric stenosis, the wall shear stress increases non-linearly with

the increase of the axial distance. The estimates of the increase in longitudinal impedance to flow of the

two-phase Herschel–Bulkley material are significantly lower than those of the single-phase Herschel–

Bulkley material. The results show the advantages of two-phase flow over single-phase flow in small

diameter arteries with stenosis.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Blood is an important biofluid which is the suspension of red
blood cells (RBCs), white blood cells (WBCs), platelets and a
variety of lipoproteins in aqueous plasma. Plasma is an aqueous
solution of various proteins, clotting factors and various ions [1].
Red blood cells are very numerous than white blood cells and are
morphologically very simple. They contain hemoglobin which
transports oxygen around the body [2]. Platelets are very small,
but extremely important in relation to blood coagulation [3].

The clot formation occurs due to the causes like the endothelial
injury, endothelial dysfunction, flow stagnation, etc. [4]. Clots are
formed at the end of a series of interacting biochemical processes:
platelet adhesion, activation and aggregation, coagulation (extrin-
sic and intrinsic), polymerization of fibrin monomers formed from
fibrinogen, and cross linking of the fibrin polymer strands to form
a fibrin network [5,6]. Fogelson [7] analyzed a continuum model
for platelet aggregation and investigated its mechanical proper-
ties. Fogelson and Guy [8] further extended these continuum
models to analyze the platelet–wall interactions of platelet
thrombosis, using numerical solution.

Lawson et al. [9] analyzed the complex-dependent inhibition
of factor VIIa by antithrombin III and heparin. Lawson et al. [10]
developed an experimental model for the tissue factor pathway to
thrombin. Attaullakhanov et al. [11] experimentally studied the

spatio-temporal dynamics of blood coagulation and pattern
formation. Mann et al. [12,13] developed models for blood
coagulation and the dynamics of thrombin formation. Panteleev
et al. [14] formulated mathematical models for the study of blood
coagulation and platelet adhesion in their review and provided
some clinical applications of the mathematical models.

As the significant devotion to the study of shear-thinning
viscoelastic nature of blood, Thurston [15] investigated an
extended Maxwell model for the one-dimensional flow of
blood. Anand and Rajagopal [16] developed a shear-thinning
viscoelastic fluid model for blood flow within a thermodynamic
framework that takes cognizance of the fact that viscoelastic
fluids can remain stress free in several configurations. Anand et al.
[5] analyzed a viscoelastic model within the thermodynamic
frame of reference for analyzing the mechanics of a coarse ligated
plasma dot.

Blood flow through stenosed arteries has been investigated
widely [17–19], because, fluid dynamics plays an important role
in the progression of arteriosclerosis and infarcts. The develop-
ment of arteriosclerosis in blood vessels is quite common, which
may be attributed to the accumulation of lipids in the arterial wall
or pathological changes in the tissue structure [20]. When an
obstruction is developed in an artery, one of the most serious
consequences is the increased resistance and the associated
reduction of the blood flow to the particular vascular bed supplied
by the artery [21]. Thus, the presence of a stenosis can lead to the
serious circulatory disorder.

Several theoretical and experimental attempts have been
made to study the blood flow characteristics due to the presence
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of a stenosis in the arterial lumen of a blood vessel [22–27].
Although most of the previous investigations [28–31] analyzed
blood flow in larger arteries, the occlusion of small arteries is also
important. Lacunar infarcts are small and deep cerebral infarcts
resulting from the occlusion of penetrating cerebral arteries,
which have a diameter of about 100 mm [32]. Even such a small
infarct can causes serious damage to the brain [33–37]. Hence, the
study of the blood flow through a narrow stenosed artery is very
important.

Since, the blood flow through narrow arteries is highly
pulsatile, several attempts were made to analyze the pulsatile
flow of blood treating blood as a Newtonian fluid [24,25,29,37].
Newtonian approximation provides good results for blood flow in
large arteries. But, blood, being the suspension of red cells
in plasma, exhibits non-Newtonian behavior at low shear rates
ð _go10=sÞ in small diameter arteries (0.02–0.1 mm). In diseased
state, the actual blood flow is distinctly pulsatile [38–41]. Several
attempts have been made to study the non-Newtonian behavior
and pulsatile flow of blood through stenosed tubes
[19,22,24,27,42]. Sankar and Lee [43] studied the pulsatile flow
of the H–B (Herschel–Bulkley) material for blood flow through
asymmetric and axially symmetric stenosed blood vessels.

Misra and Pandy [44] and Chakravarthy et al. [45] have
mentioned that for blood flowing through narrow blood vessels,
there is a peripheral layer of plasma (a Newtonian fluid) and a
core region of suspension of all the erythrocytes as a non-
Newtonian fluid. Thus, for a realistic description of blood flow,
perhaps, it is more appropriate to treat blood as a two-phase
model consisting of a core region (central layer) containing all the
erythrocytes as a non-Newtonian fluid and a peripheral layer of
plasma as a Newtonian fluid. Several researchers have studied the
two-phase models for blood flow through stenosed arteries
treating the fluid in the core region as a non-Newtonian
fluid and the fluid in the peripheral layer as a Newtonian fluid
[30,31,46,47]. Several researchers [45,48,49] have analyzed two-
phase non-linear mathematical models for blood flow through
axially symmetric stenosed arteries. In this paper, we have
studied a two-phase model for pulsatile flow of blood through
asymmetric and axisymmetric stenosed arteries, treating the
suspension of all the erythrocytes in the core region as the
Herschel–Bulkley (H–B) material and plasma in the peripheral
layer as a Newtonian fluid.

The layout of the paper is as follows: Section 2 formulates
the problem mathematically and then non-dimensionalizes the

governing equations and boundary conditions. In Section 3, the
resulting non-linear coupled implicit system of differential
equations is solved using the perturbation method. The expres-
sions for the velocity, flow rate, wall shear stress, plug core radius
and longitudinal impedance to flow have been obtained. Section 4
analyses the variations of these flow quantities with stenosis
height, stenosis shape, yield stress, amplitude, power law index
and pulsatile Reynolds number ratio through appropriate graphs.
The estimates of the increase in the longitudinal impedance to
flow for the two-phase model and single-phase model over the
uniform diameter tube for different values of the stenosis height
and stenosis shape are calculated. Some of the main results are
summarized in Section 5.

2. Mathematical formulation

Consider an axially symmetric, laminar, pulsatile and fully
developed flow of blood (assumed to be incompressible) in the z

direction through a circular artery with an axially asymmetric
mild stenosis. The walls of the artery are assumed to be rigid and
blood is represented by a two-phase model with the core region of
suspension of all erythrocytes as the Herschel–Bulkley material
and the peripheral layer of plasma as a Newtonian fluid. Fig. 1
shows the geometry of the stenosis artery. Cylindrical polar
coordinate system ðr,f,zÞ is used to analyze the flow.

It can be shown that the radial velocity is negligibly small and
can be neglected for a low Reynolds number flow in a tube with
mild stenosis. In this case, the basic momentum equations
governing the flow are

rHð@uH=@tÞ ¼�ð@p=@zÞ�ð1=rÞð@ rtHð Þ=@rÞ in 0rrrR1ðzÞ ð1Þ

rNð@uN=@tÞ ¼�ð@p=@zÞ�ð1=rÞð@ðrtNÞ=@rÞ in R1ðzÞrrrRðzÞ ð2Þ

0¼�ð@p=@rÞ ð3Þ

where the shear stress t¼ 9trz9¼�trz ðsince t¼ tH or t¼ tNÞ. The
relations between the shear stress and the strain rate of the fluids
in motion in the core region (for the Herschel–Bulkley material)
and in the peripheral region (for a Newtonian fluid) are given by

tH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mHð@uH=@rÞn

q
þty if tHZty and RPrrrR1ðzÞ ð4Þ
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Fig. 1. Geometry of the stenosed artery.
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