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Abstract—In the present paper the scaling properties of microstructure coarsening by Ostwald ripening or grain growth are studied by means of the
envelope of the family of evolving size distribution functions, which complements the usual scaling analysis by some new aspects and results. For a
self-similar family of size distribution functions the envelope is uniquely determined by the growth exponent and an envelope parameter, where the
latter is a new characteristic quantity of the coarsening system associated with the scaled size distribution function. If the family of size distributions
obeys the continuity equation their envelope is the location of the maximum particle flux density in size space, while for the corresponding cumulative
size distribution the envelope is the location of maximum size that a particle or grain can take during the passage through its growth path. The con-
struction of the envelope curve therefore allows the independent determination of some coarsening parameters without recourse to the full time devel-
opment of the individual growth paths. Numerical studies by means of the Monte Carlo Potts model of grain growth confirm and complement the
analytical results. Especially they reveal that at the early stage of growth the envelope has a much reduced and non-integer exponent.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Size distributions of particles and grains in materials are
important quantities for the characterization of materials
microstructures and their time development during coars-
ening. It is basically understood that not only the average
particle or grain size but also its stochastic counterpart,
the size distribution function, influences many microstruc-
ture–property relationships of materials (compare, e.g.,
[1–3]). What is no less important, the time variation of
the size distribution function itself also provides informa-
tion on the basic physical processes underlying the coarsen-
ing kinetics of the microstructure considered. This is
especially evident in the scaling properties of the size distri-
bution function, the subject of many studies in recent years
especially for Ostwald ripening (e.g., [4–7] and the literature
within) and grain growth (e.g., [8–11] and the literature
within). The present paper deals also with this problem,
but in contrast to the above works we consider a property
of the size distribution function that has not been studied so
well in this context, namely the envelope of a set of tempo-
rally developing size distribution functions.

Before we deal with it in more detail, let us first briefly
review the scaling properties of the size distribution func-
tion of the coarsening systems under consideration. To that

aim we define the size distribution function (from now on
referred to SDF), F ðR; tÞ, as usual in such a way that
dN ¼ F ðR; tÞdR is the number of particles or grains per unit
volume at time t and size interval dR (cf., e.g., [1,6]). For an
evolving microstructure the SDF represents in a F ðR; tÞ vs.
R plot a family of curves with time t as the family para-
meter (Fig. 1a) [12]. In the important case of scale coarsen-
ing as it is the case for Ostwald ripening and normal grain
growth the set of SDFs shown in Fig. 1a can be represented
by the function

F ðR; tÞ ¼ gðtÞ � f ðxÞ ¼ A
la f

R
l

� �
; ð1Þ

which separates in a purely time dependent function
gðtÞ ¼ A

la and a scaled SDF f ðxÞ ¼ f R
l

� �
that depends only

on the relative size variable x ¼ R
l [4–7]. As the typical scal-

ing length l of the system often the directly measurable
average particle or grain size is used. The scaling exponent
a can take both non-integer and integer values; the latter is
the case for the quasi-stationary state in volume- or mass-
preserving coarsening (see below). Non-integer a-values
can be found for example in coarsening of fractal systems
[13]. The scaling length l ¼ lðtÞ follows a power-law of
the form

l ¼ ðkt þ l1=b
0 Þ

b
: ð2Þ

The growth exponent b characterizes the underlying
dynamics typically for the observed coarsening kinetics,
where b ¼ 1=3 for diffusion controlled Ostwald ripening
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and b ¼ 1=2 for interface controlled Ostwald ripening and
curvature driven grain growth [4,5,14]. Under this scaling
hypothesis the family of SDFs in Fig. 1a collapses to a
unique single curve as shown in Fig. 1b. Therefore, the
whole family of SDFs in Fig. 1 can be described by a single,
time-independent scaled SDF f ðxÞ that is characteristic for
the type of coarsening process and possibly also of other
properties of the microstructure and the time law Eq. (2)
of the associated scaling length.

The theoretical basis of the scaling theory of Ostwald
ripening and polycrystalline grain growth was laid by Lif-
shitz, Sloyzov and Wagner (LSW) [15,16] and Hillert [17],
respectively. In particular, in these seminal works the con-
nection between the SDF and the governing growth law via
the continuity equation in size space has been established
and analyzed under the scaling assumption, Eq. (1). These
and subsequent developments of this approach to coarsen-
ing theory can be found in recent reviews and papers such
as for the Ostwald ripening theory including the important
extensions to non-zero volume fraction of the second
phase, e.g., in [5–7,18,19] and for grain growth theory
including the consideration of the grain size-topology cor-
relation, e.g., in [8–11,20–22].

Of the developments that should be highlighted here are
those that are specifically concerned with the general rela-
tionships between the different types of SDFs and the
growth law and which are particular relevant to the present
paper. The scaling hypothesis has been generalized to the
statistical self-similarity hypothesis by Mullins [4,14] sum-
marizing many investigations of grain growth and coarsen-
ing under a single scheme. Assuming this scaling
hypothesis, the relationship between the SDF and the
growth law calculating the SDF from the growth law and
vice-versa was treated by Hunderi and Ryum [23], Grätz
[24,25], Mullins [9], Vinals and Mullins [26] and Stevens
and Davies [27]. The inverse relationship giving the growth
law of coarsening from the SDF was also studied recently
by means of a thermodynamic variational principle by Svo-
boda and Fischer [28] and Fischer et al. [29]. Regarding the
cumulative SDF DeHoff [30] and, independently, Wood-
head [31] have developed a graphical method that allows
obtaining the growth law from time sequences of cumula-
tive SDF. This method was applied to particle coarsening
by Fang et al. [32] and studied theoretically by Yost [33]
and Grätz [25] on the basis of the LSW theory.

In the present paper, a further time-independent scaling
relationship of the SDF is considered, which has not yet

been studied in detail, namely the envelope curve of a
family of SDFs such as shown in Fig. 1a. To the best of
our knowledge, the only application of the envelope curve
of a set of SDFs of an evolving coarsening system exists
in the recent papers by Loureiro et al. [34,35]. Therein the
envelope of an area size distribution function has been used
as a way to obtain numerically the characteristic length
scale in the considered system of a q-states Potts model.
In contrast, we consider in the present work for the first
time the analytical properties of the envelope of evolving
SDFs of the classical coarsening theory. In particular, a
new parameter is introduced, which determines uniquely
the envelope of the family of SDFs, Eq. (1), defined by
the scaled SDF f(x). The analysis of the envelope of the
evolving SDF provides some interesting new aspects of
coarsening kinetics and thus complements the above works
for coarsening theory. We would like to point out that the
envelope considered here should not be confused with the
so-called growth path envelope analysis of DeHoff [30].
The relationship with the latter is considered in chapter 4
in connection with the cumulative SDF.

The paper is organized as follows. In the next chapter
the general equation of the envelope of a self-similar set
of SDFs is derived and used to characterize their scaling
properties. By deriving the envelope parameter for the
LSW distribution functions and others some new results
are presented for the classical coarsening theory. In chapter
3, the relationship between the envelope of the SDF and the
associated continuity equation is examined, while in chap-
ter 4 the envelope of the cumulative SDF is considered.
At this point also a connection to the growth path envelope
analysis of DeHoff is made. Finally, in chapter 5, numerical
studies for the determination of the envelope using the
Monte Carlo Potts model for grain growth are presented
confirming the theoretical results and revealing interesting
new scaling properties of the envelope in the early stage
of coarsening.

2. The envelope of a family of size distributions

Considering the family of SDFs F ðR; tÞ as shown in
Fig. 1 with time t as the family parameter, the envelope
F e ¼ F eðRÞ, that is the curve which touches all members
of the given family of curves, is defined by the following
set of equations [36]:

WðF e;R; tÞ ¼ 0; ð3aÞ

Fig. 1. (a) Family of size distribution functions F ðR; tÞ of an evolving microstructure with time t as the family parameter with t1 < t2 < t3 < t4 < t5.
(b) Scaled SDF f ðxÞ ¼ f ðR=lÞ according to Eq. (1).
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