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Abstract—In this study we take the view that frequency dependence of ferroelectric hysteresis is a result of direct competition between the speed of
polarization evolution and the speed of external loading. We used the Ginzburg–Landau kinetic equation to evaluate the evolution of polarization
vectors. We also devised a polycrystal model with a core–shell grain configuration to reflect the effect of the grain-boundary (GB) affected zone. The
phase-field results showed that the coercive field tended to increase with frequency, but remnant polarization increased only slightly while the dielec-
tric constant and piezoelectric constant d33, tended to decrease. We also found that, while both hysteresis and butterfly loops exhibited the familiar
sharp tails at low frequencies, the tails disappeared and the loops became elliptic- and kidney-shaped, respectively, at high frequencies. The calculated
low-frequency phenomena are widely supported by experiments, but the high-frequency ones are not commonly found in the literature. We substan-
tiated both types of findings with details of the underlying domain dynamics. They clearly showed a complete 180� polarization reversal at low fre-
quencies, but stopped mostly at 90� at high frequencies. We also examined the influence of the kinetic coefficient and the loading amplitude, and
found that, as either increases, the elliptic and kidney shapes of the loops would occur at a higher frequency. The calculated grain-size effects indi-
cated that the remnant polarization, dielectric constant, and d33 all decreased with decreasing grain size. This is again widely supported by experi-
ments. But we also found that the grain-size effect of coercive field is more complicated. It may increase or decrease, and it is the magnitude of
spontaneous polarization of the GB affected zone that determines its outcome.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric ceramics represent a unique class of multi-
functional materials due to their strong electromechanical
coupling and possession of domain variants. Due to the
spontaneous polarization, the domain variants are metasta-
ble and may experience domain reorientation upon applied
electric field or mechanical stress. The reorientation process
leads to microstructural evolution and adds nonlinearity to
the overall response. This process can be exploited to tune
the coupled behavior to meet the desired functions.
Domain reorientation – or more precisely the evolution
of polarization vectors on a finer scale – is a kinetic process
and inherently rate-dependent. As such, ferroelectric char-
acteristics are naturally frequency-dependent. The study
of frequency dependence in ferroelectrics has a long history
that could be dated back to the experimental investigations
of Wieder [1] and Pulvari and Kuebler [2] for single
crystals, Song et al. [3] for thin films, and Viehland and

Chen [4], Lente et al. [5], and Eiras and Lente [6] for bulks,
among others. A common feature of the reported data is
that the coercive field tends to increase with loading
frequency.

The dynamics of domain evolution in crystals is very
complex. It is a spatially and temporally dependent micro-
scopic process. In this study we take the view that fre-
quency dependence in ferroelectric hysteresis is a result of
direct competition between the speed of microstructural
evolution and the speed of external loading. Due to its
kinetic nature the speed of microstructural evolution tends
to stay behind the speed of loading, but at low frequencies
it can sufficiently catch up. At high frequencies, however, it
could fall much behind. This will have strong implications
on the frequency-dependence of coercive field and other
characteristics. This sort of frequency dependence is unlike
the frequency dependence in ordinary viscoelastic solids
where microstructural evolution is not a factor and
damping plays the key role.

To understand this complex phenomenon, we will adopt
the time-dependent Ginzburg–Landau (TDGL) kinetic
equation to evaluate the evolution of polarization vectors.
This will be done in conjunction with the free energy
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density of Landau, Ginzburg, and Devonshire [7–9]. While
the phase-field approach has been widely used to study var-
ious ferroelectric characteristics, the issue of frequency
dependence differs from others in one significant way. In
traditional phase-field modeling, the evolution of polariza-
tion vectors from TDGL is given as much time as needed to
reach the equilibrium state, but this cannot be the case for
the frequency study, especially at high frequencies. It turns
out that, even with a sufficiently high magnitude of applied
electric field, polarization reorientation could not always
fully undergo the 180� switch, and in many cases it would
stop at 90�. This has a profound effect on the shape of hys-
teresis and butterfly loops. In particular, it will be shown
that the loops will exhibit the widely recognized sharp cor-
ners and tails under low frequencies, but they will turn into
elliptic and kidney shapes respectively at high frequencies.
We shall substantiate these findings with details of the
underlying domain dynamics.

Our study of frequency dependence will be directed
toward nanocrystalline ferroelectric polycrystals. This
has the added advantage of providing some insights into
this new subject. Due to the continuous desire of minia-
turization of microelectronic devices, there is a dire need
to understand the ferroelectric characteristics of nano-
crystalline materials as the grain size decreases down to
the nanometer range. As it is now possible to process
dense BaTiO3 ceramics within the grain size of 100 nm,
this has become a realistic goal [10]. To study the
grain-size effect, it is essential to consider the variation
of grain structure near the grain boundary (GB). High
resolution images of scanning transmission electron
microscopy have indicated that grain boundaries were
atomically sharp and crystallinity was well maintained
right up to the boundary, but there existed a GB affected
zone near the grain boundary with a weaker mechanical
strength [11,12]. In ferroelectric ceramics, we consider the
GB affected zone to be a layer with a lower dielectric
constant and reduced spontaneous polarization. The
“dead layer” model of Buscaglia et al. [13] could be con-
sidered as a special case that its spontaneous polarization
is zero. The thickness of GB affected zone was reported
to span over 7–10 atomic spacing and 1–3 nm for the
dead layer. As will be shown later, the presence of GB
affected zone is crucial to the grain-size effect of nano-
crystalline materials.

In retrospect there is a large body of literature on the
phase field studies of ferroelectrics. These include, among
others, the works of Cao and Cross [14], Chen and his
associates [15–21], Wang et al. [22], Wang and Zhang
[23], and Hong et al. [24]. Additional contributions can
also be found in Zhang and Bhattacharya [25,26], Su
and Landis [27], Su and his associates [28–31], and Zhang
et al. [32]. In the context of frequency dependence, the
problem was considered in Zheng et al. [33], Xu et al.
[34] and Zhou et al. [35], but only for the low frequency
response of single crystals. The issue of grain-size depen-
dence was considered only in Shu et al. [36] and Liu
et al. [37]. The former used a four-square block model
separated by cross channels of various widths to represent
the nano-grained polycrystal, while the latter used a
dielectric phase to represent the grain boundary. It has
become evident that the general characteristics of fre-
quency dependence spanning over the low and high fre-
quency range as well as the origins of grain-size effect in

nanocrystalline polycrystals remain as yet unexplored by
the phase-field approach.

2. The basics of this phase-field model in ferroelectric crystals

There are two major components in this phase-field
model. The first one is the time-dependent Ginzburg–
Landau (TDGL) kinetic equation and the second one is
the Landau–Ginzburg–Devonshire energy density func-
tion. In addition, the quasi-static form of the Maxwell
equation and the mechanical equilibrium must also be
satisfied.

2.1. The phase-field approach to the microstructural
evolution

The objective of this approach is to seek for the attain-
able minimum energy state of the system. Its total free
energy, F, is given by the volume integral of the energy den-
sity, w, as:

F ¼
Z

V
wðP i; P i;j;eij;DiÞdV ; ð1Þ

where Pi is the polarization vector, Pi,j its gradient
(P i;j ¼ @P i=@xj), eij the strain tensor, and Di the electric dis-
placement vector. In phase field, Pi is taken as the order
parameter of the system.

As the system evolves toward equilibrium, its total free
energy continues to decrease. Its variation with respect to
time, t, can be evaluated from its variational derivative
(e.g. [38]), as:

dF
dt
¼
Z

V

dF
dP i

@P i

@t
dV < 0; where

dF
dP i

¼ @w
@P i
� @

@xj

@w
@P i;j

� �
: ð2Þ

From the integrand it can be identified that the term,
dF =dP i, is the thermodynamic conjugate to @P i=@t, and
thus its negative also serves as the thermodynamic driving
force for the evolution of the polarization vector, Pi. Its
form is identical to the left-hand side of the Euler–Lagrange
equation in classical mechanics. In the simplest case one
may take the evolution of Pi to be proportional to its driv-
ing force, as:

@P iðx; tÞ
@t

¼ �Lij
dF

dP jðx; tÞ
; or bij

@P j

@t

¼ @

@xj

@w
@P i;j

� �
� @w
@P i

; ð3Þ

where Lij are the components of the positive-definite
kinetic coefficients, and bij the components of the inverse
mobility tensor. Eq. (3) is the well-known time-dependent
Ginzburg–Landau (TDGL) kinetic equation for the evo-
lution of the order parameter, Pi. It provides the funda-
mental means of describing the kinetics of the
polarization vectors as a function of the thermodynamic
driving force. From (2) and (3), it can be seen that the
total free energy of the system will continue to decrease
as the domain structure evolves from a non-equilibrium
toward the equilibrium state, with the end point marked
by �dF =dP i ! 0.
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