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Abstract—We propose an approach for the computationally efficient and quantitatively accurate prediction of solid-solution strengthening. It com-
bines the 2-D Peierls–Nabarro model and a recently developed solid-solution strengthening model. Solid-solution strengthening is examined with Al–
Mg and Al–Li as representative alloy systems, demonstrating a good agreement between theory and experiments within the temperature range in
which the dislocation motion is overdamped. Through a parametric study, two guideline maps of the misfit parameters against (i) the critical resolved
shear stress, s0, at 0 K and (ii) the energy barrier, DEb, against dislocation motion in a solid solution with randomly distributed solute atoms are
created. With these two guideline maps, s0 at finite temperatures is predicted for other Al binary systems, and compared with available experiments,
achieving good agreement.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

By using ab initio methods, two kinds of approaches are
usually employed to simulate solid-solution strengthening.
The first one utilizes the materials properties calculated
from ab initio calculations as the input to the solid-solution
strengthening models developed in the framework of linear
elasticity theory (e.g. [7–12]). This approach is very efficient,
but the linear elasticity models used cannot properly
describe dislocation cores. Consequently, the predictions
can be qualitatively incorrect. For example, in the case of
Al–Mg and Al–Li solid solutions, the strengthening capa-
bility of Li in Al is predicted to be higher than that of
Mg, but the experimentally detected strengthening shows
the opposite behavior (for details see Appendix A).

The second approach is to fully describe the interaction
between the dislocation core and the solute atom(s) by the
ab initio method. Simulations based on this approach
should hence describe the solid-solution strengthening
[3–6] and softening [13] very accurately. The approach is,
however, time consuming, computationally demanding
and thus not entirely suitable for rapidly predicting solute
strengthening in model alloy systems, and large-scale
systematic alloy screening.

In this study we aim at merging the advantages of the
two approaches outlined above, and at developing a com-
putationally efficient and quantitatively accurate approach
to the prediction of solid-solution strengthening. In the first
step, the dislocation core is described by the 2-D Peierls–
Nabarro model [1,2]. In the second step, the pressure and
displacement fields obtained from the 2-D Peierls–Nabarro
model are used to capture the interaction between a solute
and a straight dislocation. The third step is to homogenize
this “dislocation–single solute” interaction effect into a net
“dislocation–multiple solute” interaction form by using the
solid-solution strengthening model recently developed by
Leyson et al. [3–5] for calculating the critical resolved shear
stress (CRSS) at 0 K and finite temperatures. This solid-
solution strengthening model is a Labusch-type weak pin-
ning model [14–16]. In principle, the third step could be
alternatively replaced by a Friedel–Fleischer-type strong
pinning model [17,18]. It has been observed, though, that
for most cases, when the temperature is above 78 K and
the solute concentration is above 0.01 at.%, the Labusch-
type model becomes more appropriate compared to the Fri-
edel–Fleischer-type model [19]. Thus, considering the
Labusch-type model is likely to be suited for most engineer-
ing solid-solution alloys.

This paper is organized as follows: Section 2 outlines the
theoretical methods employed in this study, including the
solid-solution strengthening model developed by Leyson
et al. [3–5], the 2-D Peierls–Nabarro model developed by
Schoeck [1,2], and the corresponding ab initio calculations
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to obtain the necessary material properties to carry out the
predictions; in Section 3.1, the dislocation–solute interac-
tions in Al–Mg and Al–Li are to be shown; in Section
3.2, we present the predicted critical resolved shear stress
vs. temperature curves of Al–Mg and Al–Li solid solutions
compared with experiments; in Section 3.3, we employ a
parametric study to show the dependence of the solid-
solution strengthening capability on the strengthening
parameters which are defined in Section 2.2.2; in Section
3.4, we compare the predictions by the parametric study
described in Section 3.3 with the previous studies in which
the dislocation–solute interactions are directly calculated
by the ab initio method [3,4], and the experiments [62,63];
Section 4 summarizes our findings.

2. Methodology

In this section, we present the approach in a reverse
manner, because the necessary input parameters are from
the previous step(s). First we briefly describe the solid-solu-
tion strengthening model developed by Leyson et al. [3–5];
then the 2-D Peierls–Nabarro model used in this study, and
how the dislocation–solute interaction energies are calcu-
lated from the 2-D Peierls–Nabarro model; finally we pres-
ent the ab initio calculations used to obtain the necessary
materials properties to carry out this approach.

2.1. Solid-solution strengthening model [3–5]

The solid-solution strengthening model developed by
Leyson et al. [3–5] is related to the Labusch model for
dense solute arrays [14–16]. This model describes the fol-
lowing process: in an infinite crystal of a pure metal, a
single isolated dislocation is at its minimum energy,
hence it assumes a straight form. In a solid solution with
randomly distributed solute atoms, a straight dislocation
should spontaneously bow-out, relaxing to its energeti-
cally favorable shape due to the local arrangement of
the solutes. The final relaxed shape of the dislocation
results from two competing processes. First, the binding
energy (Ep) of the dislocation to the local region is
decreased, while, second, the line energy (Eel) is increased
due to the bow-out configuration. The bow-out shape is
characterized by two parameters: the characteristic seg-
ment length (Lc) and the characteristic bow-out distance
(xc), both of which can be determined by minimizing
the total dislocation energy (Etot=Ep+Eel). At 0 K, the
critical resolved shear stress (CRSS) corresponds to the
applied stress which is required to move a dislocation
segment of characteristic length (Lc) over a characteristic
bow-out distance of (xc). At finite temperature, the
movement of the dislocation can be thermally activated.
The details of the analytical derivation of this model
can be found in Refs. [3–5].

To carry out this model, the dislocation–solute interac-
tion energy is required. This interaction energy can be
approximated by elastic models (e.g. [8,9]), or fully by ab
initio calculations (e.g. [3–6]). In this study, the interaction
energy is determined by using the 2-D Peierls–Nabarro
model suggested by Schoeck [1,2].

It should be mentioned that the dislocation line tension
has to be incorporated into this analysis for describing the
bow-out of the dislocation. In the previous work of Leyson

et al. [3,4], the dislocation line tension of Al was obtained
from atomistic simulations (embedded atom method
(EAM) potential). In this study, the dislocation line ten-
sion of Al is obtained from the isotropic linear elasticity
[20], which is justified since Al has a relatively low elastic
anisotropy with a Zener ratio of AZ � 1:3. The line
tension obtained from isotropic linear elasticity is
0.43 eV/Å for edge and 1.58 eV/Å for screw dislocations.
The order of magnitude of these values is the same as
those obtained from atomistic simulation, namely
0.25 eV/Å [3] or 0.47 eV/Å [4] for edge, and 1 eV/Å for
screw dislocations [21]. The elastic constants used to
determine the line tension are obtained by ab initio
calculations in conjunction with Hershey’s homogenization
method [27] (see Section 2.3).

2.2. Dislocation–solute interaction by 2-D Peierls–Nabarro
model

As described in the previous section, the solute position
dependent dislocation–solute interaction energy is required
to carry out the solid-solution strengthening model by
Leyson et al. [3–5]. In this study, the interaction energy is
obtained by inserting the misfit parameters into the
pressure and displacement field obtained from the 2-D
Peierls–Nabarro model. In this section, we first briefly
describe the 2-D Peierls–Nabarro model developed by
Schoeck [1,2], and then introduce the misfit parameters,
i.e. volume and misfit parameters.

2.2.1. Equilibrium dislocation configuration using the 2-D
Peierls–Nabarro model [1,2]

In the 2-D Peierls–Nabarro model developed by Scho-
eck [1,2], the equilibrium configuration of a straight dislo-
cation is determined by minimizing the dislocation energy
with respect to the adjustable geometrical parameters in
the trial functions:
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where uk and u? are the displacement profiles which are
parallel and perpendicular to the total Burgers vector,
respectively; Zi and Y i are the Burgers vectors of the frac-
tional dislocations which are parallel and perpendicular
to the total Burgers vector, respectively; di and ki are
positions of the fractional dislocations; xi and mi are
the width of the fractional dislocations. The trial func-
tions serve to approximate the displacement profiles of
the fractional dislocations. The dislocation energy com-
prising the elastic energy and the misfit energy can be
calculated using the trial functions together with the
knowledge of the elastic modulus and the c-surface of
the pure metal in consideration. The dislocation energy
is minimized with respect to Zi; Y i; di; ki; xi, and mi,
with one constraint that the sum of Burgers vectors of
the fraction dislocations must be the same to the Burgers
vector of the dislocation.

In this study, the equilibrium configuration of the
straight dislocation in pure Al is determined by assuming
two triplet partial dislocations as proposed in Ref. [1]:
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