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Within the framework of the direct approach to the plate theory we consider the infinitesimal

deformations of a plate made of hyperelastic materials taking into account the non-homogeneously

distributed initial stresses. Here we consider the plate as a material surface with 5 degrees of freedom

(3 translations and 2 rotations). Starting from the equations of the non-linear elastic body and

describing the small deformations superposed on the finite deformation we present the two-

dimensional constitutive equations for a plate. The influence of initial stresses in the bulk material on

the plate behavior is considered.

& 2010 Elsevier Ltd. All rights reserved.

0. Introduction

Thin-walled engineering structures made of hyperelastic
porous materials, such as polymer foams, have different applica-
tions in the last decades [1–4]. A polymer foam is a cellular
structure consisting of a solid polymer, for example polyurethane,
etc., containing a large volume fraction of gas-filled pores. There
are two types of foams. One is the closed-cell foam, while the
second one is the open-cell foam. The defining characteristics of
foams is the very high porosity: typically well over 80%, 90% and
even 98% of the volume consists of void spaces. The porosity and
the topology of a foam determine the other properties, such as for
example, Young’s modulus, etc.

Polymer foams may demonstrate very large elastic strains.
Hence such foams may be considered as a non-linear hyperelastic
material. Different models allowing the description of large
hyperelastic deformations of foams are proposed in the literature
[3,4]. The existing models of foams may be classified as follows.
The first type of models bases on the detailed considerations of
the foam cell deformation taking into account the cell structure,
the properties of cell walls and struts, the pressure change in the
closed cells, etc., see [3–9] among others. The famous Kelvin
model of foam belongs to this type. On the other hand the
computational efforts may be significant and there is hard to
establish experimentally the real material properties of cells. The
second class of models use the description of a foam as the
continuum media. Within the framework of this type models, one

takes into account the structure of foam cells, the solid material
and gas properties and other parameters in the constitutive
equations at whole. Ogden’s material model is applied for the
finite deformations of hyperelastic foams, see [4,10–17]. Both
types of models of hyperelastic foams have advantages and
disadvantages. Further we apply the second approach using
Ogden’s material model of hyperelastic material for the moderate
large strain and for the low level of stress field.

There are many plate-like engineering structures made of
foams, for example sandwich plates with a core made of foam,
laminates, etc., see [3,4] for details. Within the framework of the
theory of plates and shells [18–23] the theory of elastic plates
with non-homogeneous distribution of the porosity (functionally
graded plates) is developed in [24] while the theory of viscoelastic
plates is presented in [25,26], see also [27].

For the structures under consideration the initial stresses may
influence on the plate behavior. The mechanics of the prestressed
three-dimensional solids is developed in numerous papers and
books, see [13,28–32] among others. The aim of this paper is to
extend the results of [24] to plates made of material with internal
stresses using the theory of small deformations superposed on
finite deformation presented in the mentioned works. Let us note
that the Kirchhoff–Love linear theory of shells made of pre-
stressed material was earlier developed in a number of papers, see
for example [30,33–36]. Here we consider the theory of plates
taking into account the transverse shear deformations like in the
theories proposed by Reissner [37,38] and Mindlin [39], see also
the review [40].

The paper is organized as follows. In Section 1 we recall the basic
equation of the three-dimensional theory of non-linear elasticity. We
present here the governing equations describing the infinitesimal
deformations of a prestressed body. Further in Section 2 we consider
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the linearized equilibrium equations of a three-dimensional plate-like
body with the initial stresses depending on the thickness coordinate.
In Section 3 we give the statement of the two-dimensional boundary-
value problems for the linear plate theory.

1. Basic equations of 3D non-linear elasticity

Following [13,29–32] in this section we present the general
equations governing small (incremental) deformations super-
imposed on a finite homogeneous deformation in an compressible
elastic material. The Eulerian equilibrium equations of the non-
linear body are given by the relations

div sþrf ¼ 0, s¼ J�1F � S, S¼
@W

@F
, ð1Þ

where div is the divergence operator in the actual configuration w,
s the Cauchy stress tensor, S the first Piola–Kirchhoff stress tensor,
r the material density in the actual configuration, f the body force
vector per unit mass, W the strain-energy function (per unit
volume), J¼det F, and F is the deformation gradient defined as in
[13]. Note that here we use the notation A � a and A � B for
the second-order tensors A and B, and a vector a instead of the
alternative way Aa, and AB, respectively. Further we assume the
isotropic behavior of the material, so we use the constitutive
equation in the following form:

W ¼WðI1,I2,I3Þ, ð2Þ

where I1, I2, I3 are the principal invariants of the left Cauchy–
Green deformation tensor b¼ F � FT or the right Cauchy–Green
deformation tensor c¼ FT

� F, defined by
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Here l1, l2, l3 are the principal stretches, tr denotes the trace of a
second-order tensor, and (y)T denotes transposed. l1, l2, l3 may
be also considered as the arguments of the strain function W:

W ¼Wðl1,l2,l3Þ:

For the isotropic material S and s are given by the relations

S¼ 2
@W

@c
� FT
¼ ðf0c�1þ f1Iþ f2cÞ � FT,

s¼ J�1F � S¼ f0Iþ f1bþ f2b2, ð3Þ

where I is the unit second-order tensor, f0, f1, f2 are functions
which may be expressed as combinations of the partial
derivatives of W with respect to Ii or li, see [13,29,30] for
details.

For the description of the non-linear behavior of polymeric
foams the following constitutive equation is widely used [4]

W ¼
XN

i ¼ 1

2mi

a2
i
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where mi, ai, bi are the elastic moduli (i¼1,y,N). Here

m¼
XN

i ¼ 1

mi:

m denotes the initial shear modulus, while the initial bulk
modulus k is given by

k¼
XN

i ¼ 1

2mi biþ
1

3

� �
:

The model (4) was originally proposed by Ogden [11,12], see also
[4,16,10,17,15] among others, where Ogden’s model is used. For
some special choice of the values mi, ai, bi and N, Ogden’s strain
function W reduces to various others models applied in the non-
linear elasticity (neo-Hookean, Varga, Mooney–Rivlin, Blatz–Ko
constitutive equations, etc.).

Using the identity Div (J�1F)¼0 we transform Eqs. (1) to the
Lagrangian form

Div Sþr0f ¼ 0, ð5Þ

where Div is the divergence operator in the reference configura-
tion and r0 the density in this configuration.

Let us consider the equilibrium equations of a prestressed
body. In other words, we introduce the small deformations
superposed on the finite deformation. Let x be the known position
vector in the actual configuration w while xþw is the position
vector in another actual configuration w% which differs from w by
the infinitesimal vector w.

The linearization of Eq. (5) results in [13,29–32]

Div S%

þr0f %

¼ 0, ð6Þ

where

S%

¼
@2W

@F@F
� �F%T, F%

¼Grad w,

and Grad is the gradient operators in the reference configuration,
f % is the small additional body force acting in the actual
configuration w%, and �� is the double dot (inner) product.

The Lagrangian linearized equilibrium equation (6) may be
transform to the Eulerian form

div Hþrf %

¼ 0, ð7Þ

where H is the linearized stress tensor given by formulas [29,31]

H¼ J�1F � S%:

For example, let us consider the derivation procedure of S% and H
for the special case of (4) with N¼1, a1 ¼ 2, m1 ¼ m, b1 ¼ b. Here
we have the constitutive relations

W ¼
m
2

tr c�3þ
1

b
ðJ�2b�1Þ

� �
,

S¼ mFT
�mJ�2bF�1, s¼ mJ�1b�mJ�2b�1I: ð8Þ

Using the latter relations and the formula J% ¼ J div w we
established the following relations for S% and H

S%

¼ mF%T
þmJ�2bF�1

� F%

� F�1
þ2mbJ�2bðdiv wÞF�1,

H¼ mJ�1F � LT
� FT
þmJ�2b�1Lþ2mbJ�2b�1ðdiv wÞI,

L¼ F%

� F�1
� grad w: ð9Þ

Here grad is the gradient operators in the actual ðwÞ configuration.
Note that for the case F¼ I Eqs. (9) reduce to Hooke’s law

S%

¼H¼ 2meþ2bmI tr e, e¼
1

2
ðLþLT

Þ:

The equilibrium Eqs. (7) or (6) describe the prestressed solid
deformable body as a result of infinitesimal deformations. From
this point of view one may consider the relations H¼HðLÞ or
S%

¼ S%

ðF%

Þ as the constitutive relations of the prestressed body. Of
course, H and S% depend also on the initial deformation gradient
F. Let us note that in the general case the tensors H and S% are
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