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Abstract—The texture and phase evolution of metastable B-I1I Ti alloy wires, produced in a medical-grade wire-processing facility, are examined via
synchrotron X-ray diffraction. The texture development in the B-phase was interpreted by a simple viscoplastic self-consistent (VPSC) modeling
approach. Both the stress-induced martensite and stress-induced omega phase transformations are observed during the early stage of cold deforma-
tion. The (110)g texture is gradually replaced by the (210)g texture at cold work levels above 50% total area reduction or equivalently 0.70 axial true
strain. Formation of the (210)g-fiber from the combined activity of {112} and {332} twinning plus conventional slip is observed and may not
directly depend upon the stress-induced phase per se. According to the VPSC model, similar texture should occur in other metastable B-Ti alloys
subjected to similar wire processing. These data should help inform process—structure—function towards better wire design in titanium-based medical

devices.
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1. Introduction

B-Ti alloys have been utilized in the medical device
industry at an increasing rate due to their proven biological
performance and relatively high elastic strain compared to
o and o + B Ti alloys. This favorable combination of prop-
erties arises because of a relatively compliant elastic modu-
lus, high strength, and with specific processing, inelastic
recoverable strain from the stress-induced phase transfor-
mation [1,2]. For applications such as intravascular guide-
wires, a large recoverable strain permits deployment
through the complex vascular system to the distal target
without permanent deformation. An elastic guidewire path
helps mitigate tissue damage risk and provides enhanced
proximal-to-distal torque control for accurate navigation
and therapeutic delivery [3]. These beneficial properties
are highly dependent on texture, and therefore process. In
the body-centered cubic (bcc) crystal structure, the B-Ti
alloy has the lowest modulus in the (100) crystal direction,
but high yield stress for dislocation slip in the (111) direc-
tion due to low Schmid factors [4]. The elastic strain asso-
ciated with the stress-induced martensite (SIM) phase
transformation is the largest along the (110) direction [5].
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Therefore, understanding the deformation behavior and
texture evolution during wire manufacture is critical for
developing new materials, controlling processes within suit-
able bounds, and improving material properties for the
next generation of Ti-based medical devices. Indeed,
numerous studies have been carried out to investigate the
deformation mechanisms of B-Ti alloys [5-13].

2. Deformation and texture in B-Ti

It is well known that deformation systems in B-Ti alloys
include dislocation slip in the (111) direction, {112} and
{332} deformation twinning [6-9], and SIM and stress-
induced omega (SIO) phase transformation [5,7,8,10,11].
The SIM phase (o) has an orthorhombic crystal structure;
the SIO phase has a hexagonal close-packed crystal struc-
ture. As illustrated in Fig. 1, the undistorted axes in the
p-phase and the SIM are related as: [100]; — [100],
[011]; —[010], and [011]; —[001],. The orientation
between the P and the SIO axes follows:
{111}, — {0001}, and [110]; — [1120],. The SIM phase
transformation causes expansion in one of the (110) direc-
tions and contraction in one of the (100)g directions, where
the energetically favorable variant depends on the
relationship between the crystal orientation and the loading
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(b)

Fig. 1. Schematic showing (a) the lattice relationship between the  and omega phase, and (b) between the  and stress-induced martensite.

direction. On the other hand, the SIO phase transformation
causes small contractions in both of the (111)g and (211)
directions [14]. The dominant systems which are active dur-
ing deformation depend on many factors including: the
stress—strain status, the phase stability, and local and over-
all texture.

Although the evolution of texture and its influence on
the mechanical properties of cold-rolled alloys have been
extensively studied [5,11-13], the texture of B-Ti alloys
after axisymmetrical deformation, such as cold drawing,
has been largely ignored. There is still very little published
research on the texture of cold-drawn B-Ti alloys. For
materials with a bcc crystal structure, such as V, Nb,
Ta, Mo, W and Fe, the texture after cold drawing is the
well-known (110)g fiber texture [15]; a similar texture
would therefore be expected in cold-drawn B-Ti alloys.
However, this is not the case in our recent studies
[16,17], where the strong (210)g fiber texture rather than
(110)p texture was observed in heavily cold-drawn B-III
and Ti-15Mo alloys. In this paper, the evolution of tex-
ture and stress-induced phase transformation in a metasta-
ble PB-Ti alloy during the cold-drawing process was
tracked by using synchrotron X-ray diffraction on samples
that were collected at selected processing steps. Mecha-
nisms for the (210)p fiber texture are suggested via inter-
pretation of a viscoplastic self-consistent (VPSC) model
[18] that has been successfully used in modeling textures
of materials with different crystal structures under various
stress—strain conditions [19-22].

3. Materials and experiments

Cold-drawn B-III Ti alloy wire comprising nominally
11Mo-5.8Zr-4.44Sn-0.140 (wt.%) with balance Ti, com-
monly used in medical devices such as orthodontic arch
wires, was processed for this study. Initial 2.5 mm wire
stock was B-annealed at 815 °C for 300 s in an inert argon
atmosphere and cooled by flowing argon gas. After anneal-
ing, it was reduced in diameter by 85% using successive,
multi-die, cold drawing (1.9 true strain) to a final diameter
of 1 mm. Samples were collected at selected points during
the process. The texture of each sample was measured on
the beamline 11-ID-C at the Advanced Photon Source
(APS) at Argonne National Laboratory. A monochromatic

Fig. 2. Diffraction image of (a) B-III after anneal, (b) B-11I after 50%
CW (0.70 true strain) and (c) B-III after 85% CW (1.9 true strain). The
sample axial direction is vertical from the beam center. Arrows in (e)
show the diffractions of the stress-induced phases.

X-ray beam with a wavelength of 0.10801 A was used with
aperture-selected beam size of 0.5 x 0.5 mm?”. The experi-
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