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Abstract—A mesoscale modeling framework integrating thermodynamics, kinetic Monte Carlo (KMC) and finite element mechanics (FEM) is
developed to simulate displacive thermoelastic transformations between austenite and martensite in shape memory alloys (SMAs). The model is
based on a transition state approximation for the energy landscape of the two phases under loading or cooling, which leads to the activation energy
and rate for transformation domains incorporating local stress states. The evolved stress state after each domain transformation event is calculated
by FEM, and is subsequently used in the stochastic KMC algorithm to determine the next domain to transform. The model captures transformation
stochasticity, and predicts internal phase and stress distributions and evolution throughout the entire incubation, nucleation and growth process. It
also relates the critical transformation stresses or temperatures to internal activation energies. It therefore enables quantitative exploration of
transformation dynamics and transformation–microstructure interactions. The model is used to simulate superelasticity (mechanically induced
transformation) under both load control and strain control in single-crystal SMAs under uniaxial tension.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Thermoelastic shape memory alloys (SMAs) have broad
applications in sensing, actuation, energy conversion and
damping [1]. They can switch between their original shape
and a notably different shape under thermal or mechanical
cycling, and this process usually involves a temperature or
stress hysteresis indicative of energy dissipation [2–4]. The
shape memory and superelastic properties of SMAs are
achieved by a reversible and diffusionless martensitic phase
transformation that occurs mainly by a large, cooperative
shear of atoms [5]. The transformation process (i.e. the
nucleation and growth of thermoelastic martensite plates)
involves extensive interactions with defects, including inter-
faces and surfaces. For example, martensite plates may
preferentially nucleate at these defects [6,7], and may also
interact with them at the transformation front [8]. The crys-
tallographic shear by which martensite develops can lead to
mechanical interactions across both phase and grain
boundaries [9], as well as strain relief at free surfaces.

Transformation–microstructure interactions, however,
are not well understood, and their effects on transformation
kinematics have not been established quantitatively. The

need to gain a fundamental understanding of the roles of
defects is further motivated by recent results showing size
effects in small-scale SMAs. For example, grain size effects
on transformation temperatures and stresses emerge below
a critical size of about 100 lm in polycrystalline SMAs [10–
13]. In single-crystalline SMA pillars with diameters below
20 lm, the pillar size clearly affects the transformation
stresses [14–17]. In SMA microwires [18] and foams [19–
21] with bamboo grain structures (i.e. with grain sizes equal
to the wire diameter or strut thickness), the characteristics
of transformation also depend on the sample size. These
size effects have been attributed to the increasing relative
density of grain boundaries or free surfaces at smaller
scales, but their origins and microstructural mechanisms
have just begun to be explored. Modeling martensitic trans-
formation processes at the microstructural level can shed
light onto the interplay between transformation processes
and grain boundary or surface states, and perhaps eventu-
ally onto the microstructural design of SMAs.

The majority of existing models for SMAs are analytical
and generally fall into the following categories.

(1) Phenomenological theories of martensite crystallog-
raphy, which examine the conversion pathways
between two crystal structures in terms of distortion
(or shearing) and rotation [22–25].
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(2) Dislocation-based models of martensite interfaces,
which use dislocation arrays to model interface struc-
ture and mobility based on the known properties,
such as the stress fields of dislocations [26–31].

(3) Thermodynamic models of martensitic nucleation
[32–34] and transformation [35–38], which focus on
the contribution to the free energy change from inter-
face energy, elastic energy and dissipation
mechanisms.

(4) Constitutive micromechanical models for martensitic
transformation, which determine macroscopic behav-
iors based on an assumed local stress–strain constitu-
tive law and advance transformation by gradually
changing a state variable such as martensite fraction
[39–44].

These models provide profound understanding of
martensitic transformation, mechanistically, thermody-
namically and mechanically. In general, however, they
neither involve a physical timescale nor address spatial
phase distributions and evolution. Few of these models
have been used to explore the effects of defects on trans-
formation kinematics, and many are not suited for this
purpose.

Computational models for reversible martensitic trans-
formations in SMAs are relatively rare. There are relatively
few atomistic studies, such as molecular dynamics (MD) of
SMAs [45,46], and most of them deal with the binary NiTi
system [47,48], since they rely on the availability of accurate
inter-atomic potentials for complex SMAs. The limited
length (e.g. 10–30 nm) and time (e.g. nanosecond) scales
accessed by such MD studies are not directly comparable
to those (e.g. hundreds of nanometers [49] to micrometers
in size and milliseconds [17] to minutes in time) involved
in existing experimental measurements of SMAs. There
are also a number of finite element [50–55] and phase field
[56–60] models for SMAs, which can incorporate much lar-
ger scales in the constitutive laws describing material energy
during transformation. However, continuum models some-
times cannot predict reverse transformation, and more gen-
erally tend to lack connections between simulated scales
and those intrinsic to martensitic transformation in SMAs,
which are essential for understanding defect–transforma-
tion interactions.

All of the above points speak of the need for a physically
based mesoscale model for thermoelastic martensitic trans-
formation – one that can include a physical timescale for
transformation and can specifically address issues of trans-
formation kinematics in the presence of microstructure.
Our purpose in this paper is to develop such a mesoscale
modeling framework for SMAs by coupling the kinetic
Monte Carlo (KMC) algorithm with the finite element
method (FEM). FEM allows us to determine the mechani-
cal state everywhere in the material, and to allow the local
state to affect the transformation sequence. The onset and
progression of the transformations are controlled by
KMC using a transition-state rate equation characteristic
of thermally activated phenomena, and the forward and
reverse transformations are treated “symmetrically” in the
model, i.e. they are both permitted at any time. In what fol-
lows we develop the framework for such a mesoscale
model, and demonstrate its capabilities to simulate
mechanically induced transformations under conditions of
constant loading rate and constant strain rate.

2. Thermodynamic framework for thermoelastic reversible
martensitic transformations

In this section, we examine the energetics governing
austenite M martensite transformations in SMAs. In
Section 2.1, we determine the free energies of the two phases
as functions of temperature and stress, as the difference
between them is the driving force for transformation. In
Section 2.2, we formulate the system energy evolution during
transformations, which involves a variety of additional
sources, such as interface energy, strain energy and
dissipated energy. In Section 2.3, we propose an apparent
equilibrium temperature/stress, and determine the transfor-
mation hysteresis incorporating coupled temperature–stress
effects. In Section 2.4, we use an energy landscape approach
to describe the above thermodynamic driving forces and
energy penalties for transformations. Lastly, in Section 2.5,
we present a new type of energy landscape map describing
conversions between an initial state and a transformed state,
which will lay the foundation for our subsequent
KMC–finite element mesoscale modeling in Section 3. In
the following, we use “A” and “M” to denote properties of
austenite and martensite, respectively.

2.1. Free energy difference between austenite and martensite

The Gibbs free energies GA and GM per unit volume as a
function of temperature T are illustrated in Fig. 1(a). When
there is no external stress, GA ¼ Gch

A (red line) and GM ¼ Gch
M

(bold blue line), where Gch
A and Gch

M are the chemical free
energies. The slopes of these lines are the entropy SA and
SM, respectively.

Gch
A ¼ HA � TSA and Gch

M ¼ HM � TSM ð1Þ
Let T0 denote the equilibrium temperature at which Gch

A;0 ¼
Gch

M ;0 and the transformation enthalpy DH 0 ¼
H M ;0 � HA;0 ¼ T 0 SM ;0 � SA;0ð Þ ¼ T 0DS0, where DH0 < 0
and DS0 < 0. As HA ¼ HA;0 þ qCA

p T � T 0ð Þ and HM ¼
H M ;0 þ qCM

p T � T 0ð Þ, where q is the density and Cp is the
specific heat capacity, the transformation enthalpy at T is

DH ¼ HM � HA ¼ DH 0 þ qDCp T � T 0ð Þ ð2Þ
with DCp ¼ CM

p � CA
p . Meanwhile, SA ¼ SA;0 þ qCA

p ln T=T 0ð Þ
and SM ¼ SM ;0 þ qCM

p ln T=T 0ð Þ, and therefore the transfor-

mation entropy at T is

DS ¼ SM � SA ¼ DS0 þ qDCpln T=T 0ð Þ ð3Þ
where SM < SA and DS < 0. As a result, Gch

M decreases with
T more slowly than Gch

A , as can be seen in Fig. 1(a). Eqs. (2)
and (3) lead to the change in chemical free energy at T,
DGch ¼ Gch

M � Gch
A ¼ DH � TDS.

DGch ¼ �DS0 T � T 0ð Þ þ qDCp T � T 0 � Tln T=T 0ð Þ½ � ð4Þ
If the change in heat capacity is assumed insignificant and
DCp = 0, Eq. (4) is reduced to

DGch ¼ �DS0ð Þ T � T 0ð Þ ð5Þ
When T > T0, DGch > 0, and austenite is preferred; when
T < T0, DGch < 0, and martensite is preferred.

Upon application of an external stress that leads to a
resolved shear stress s on the habit plane (in the elastic
regime before yielding), GA changes little while GM is
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