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Abstract

Deformation processed metal–metal (matrix–reinforcement) composites (DMMCs) are high-strength, high-conductivity in situ com-
posites produced by severe plastic deformation. The electrical resistivity of DMMCs is rarely investigated mechanistically and tends to be
slightly higher than the rule-of-mixtures prediction. In this paper, we analyze several possible physical mechanisms (i.e. phonons, inter-
faces, mutual solution, grain boundaries, dislocations) responsible for the electrical resistivity of DMMC systems and how these mech-
anisms could be affected by processing conditions (i.e. temperature, deformation processing). As an innovation, we identified and
assembled the major scattering mechanisms for specific DMMC systems and modeled their electrical resistivity in combination. From
this analysis, it appears that filament coarsening rather than dislocation annihilation is primarily responsible for the resistivity drop
observed in these materials after annealing and that grain boundary scattering contributes to the resistivity at least at the same magnitude
as does interface scattering.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Deformation processed metal–metal composites
(DMMCs) are a class of in situ composites that display
high strength and high electrical and thermal conductivity
[1]. They are produced by severe plastic deformation (i.e.,
rolling or extruding, swaging and wire drawing) of two
ductile phases [1]. The first Cu–Nb DMMCs were devel-
oped by Bevk et al. [2], and other Cu refractory metal
composites were studied by Verhoeven et al. [3]. The
strengthening mechanisms in DMMCs have been studied
extensively [4–8], but only a few papers have attempted

to explain the electrical conductivity of DMMCs [9,10].
An early model of the electrical resistivity of DMMCs
can be described by the rule of mixtures (ROM) [10]. How-
ever, the ROM considers only the resistivity and volume
fractions of each constituent phase without accounting
for any microstructural feature of the DMMCs.

Various resistivity models have been developed for mac-
roscopic metal matrix composites to include the micro-
structural details (e.g. size, shape, orientation and spacing
of constituent phases, dislocations and mutual solution)
[11–18]. Most of these are empirical models that do not
consider the physical mechanisms for resistivity, and they
depend on many phenomenological parameters to repre-
sent microstructural features. Thus, they are best described
as fitting models. Moreover, these models are all based on
various simplifying assumptions of composite microstruc-
tures and are therefore restricted by the difficulty of
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accurately capturing the complexity of real microstructural
features. The spheroidal model developed by Ondracek [11]
considers two-phase composites in which discontinuous
spheroidal particles are embedded in the matrix phase. This
model is capable of predicting the electrical conductivity of
two-phase composites over a range of compositions by
considering the shape and orientation of both phases.
However, this model does not account for the formation
of a continuous network of the inclusion phase at a suffi-
ciently high volume fraction, which will increase the con-
ductivity drastically when a conducting inclusion phase is
interconnected in an insulating matrix phase [12]. This per-
colation concept is well described by the general effective
media (GEM) equation developed by McLachlan et al.
[13]. Based on percolation theory [14], which is applicable
only when the electrical conductivities of two phases differ
substantially (conductivity of one phase tends to zero), the
GEM equation incorporates the conductivities of both
constituent phases, their volume fractions and two free
parameters to explain different experimental results over
an entire composition range. The percolation effect (i.e.,
the formation of an interconnected network of highly con-
ductive inclusion phases) in this model is described by an
asymptotic S-shaped curve that shows the effective conduc-
tivity dependence on the volume fraction of the high-con-
ductivity phase. However, the major drawback of the
GEM model is that the free parameters do not have a
direct correlation with the real microstructural features
and serve only as fitting parameters, which limits the appli-
cability of GEM to that of a fitting model relying on exper-
imental inputs [15].

Fan [16] introduced a new approach to topologically
transform a two-phase microstructure into a body with
three well-defined microstructural elements, which is
microstructurally and electrically equivalent to the original
microstructure. This model recovers the ROM for conduc-
tivity when both phases are perfectly aligned along the cur-
rent direction (parallel configuration) and recovers the
ROM for resistivity when both phases are alternately sep-
arated from each other along the current direction (serial
configuration). The model considers the effects of the
microstructural features (e.g., volume fraction, phase
arrangement, phase continuity and phase resistivity ratio)
on the electrical resistivity of two-phase composites, mak-
ing it superior to ROM and Hashin and Shtrikman’s
bounds for electrical resistivity [17] that account only for
the volume fraction and resistivity of constituent phases.
The major drawback of Fan’s model is that the two con-
stants characterizing the phase topology are difficult to
measure, rendering it phenomenological rather than phys-
ical. A comprehensive review of these macroscopic models
was done by Lux [18].

In all the above resistivity models, the composites com-
prise a conducting metal inclusion phase and an insulating
matrix phase, and the inclusion phase comprises mostly
macroscopic particles. However, in DMMCs, both the
reinforcement and matrix phases are metals, and the

reinforcement phase comprises long (extremely high aspect
ratio), almost continuous filaments with a thickness from
tens to hundreds of nanometers. None of the above models
would be able to predict the resistivity of DMMCs well for
the following reason. It is well known that a size effect
exists for the resistivity of thin metal films or wires when
any one of the dimensions of metal specimens is compara-
ble with the mean free path of free electrons in the bulk
metal [19–25]. The mean free paths of free electrons in most
metals are in the range of several to tens of nanometers
[9,10,26], thus the size effect on the resistivity should be
considered in DMMCs. The size-dependent resistivity can
be attributed to the increasing restriction of the interface
on the mean free path of electrons as film thickness
decreases since the resistivity is inversely proportional to
the mean free path of electrons. Thomson [19] first derived
a formula for thickness-dependent resistivity of thin films
by averaging all the free paths of a single free electron over
all depths and all angles under the restriction that surfaces
act as termination sites for the electron’s free path. Fuchs
[20] pointed out that it is necessary to consider the mean
of all the free paths of all the electrons in the metal in order
to obtain an accurate mean free path. By solving Boltz-
mann’s transport equation under the diffuse or partial dif-
fuse scattering boundary condition, he obtained a rigorous
formula for thickness-dependent resistivity of thin films
and derived approximate formulas for thin and thick film
limits. An interface scattering factor was introduced in
his paper to characterize the probability of elastic scatter-
ing. According to Fuchs, the interface scattering factor is
directly related to the surface roughness. A perfectly
smooth mirror surface tends to scatter electrons elastically,
making the conductivity of a perfectly smooth thin film the
same as its bulk counterpart. In contrast, a jagged, rough
surface tends to scatter electrons diffusely and increases
the resistivity of a thin film.

Fuchs found a good agreement between the theory and
experimental resistivity data of a cesium thin film. Sondhei-
mer corrected the approximation formula in the thick film
limit of Fuchs [21]. Dingle [22], MacDonald and Sarginson
[23] and Chambers [24] extended the thin film work to cir-
cular, square and arbitrary cross-section thin wires with
two dimensions confined, respectively. In the above theo-
ries, grain boundaries are believed to have a negligible
effect on the resistivity of the metals because the grain size
is usually much larger than the electron mean free path in
bulk metal so that the grain boundary contribution to resis-
tivity is relatively small [25]. However, the average grain
size in a polycrystalline thin film would be roughly equal
to film thickness, which is comparable to the electron mean
free path [25]. Therefore, grain boundary scattering also
predicts a thickness-dependent resistivity similar to the
Fuchs size effect caused by surface scattering. Mayadas
et al. incorporated the grain boundaries as parallel, par-
tially reflecting planes with delta scattering potential and
solved the Boltzmann transport equation with the purely
specular scattering at the external surface (i.e. no Fuchs
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