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Abstract

Recent improvements in experimental and computational techniques have led to a vast amount of data on the microstructure and
deformation of polycrystals. These show that, in a number of phenomena, including phase transformation, localized bands of deforma-
tion percolate in a complex way across various grains. Often, this information is given as point-wise values arrayed in pixels, voxels and
grids. The massive extent of data in this form renders identifying key features difficult and the cost of digital storage expensive. This work
explores the efficiency of wavelets in storing, representing and analyzing such data on shape-memory polycrystals as a specific example. It
is demonstrated how a compact wavelet representation captures the essential physics contained in experimental and simulated strains in
superelastic media.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recent developments in material characterization tech-
niques have led to new abilities in determining the micro-
structure and strain fields of heterogeneous media [1–3],
and in particular shape-memory alloys [4,5]. These are
often represented as images composed of pixels or voxels.
(For a review on the dominant electron microscopy tools
and the state of the art X-ray techniques the reader is
referred to Ref. [6].) Similarly, improvements in computa-
tional methods have enabled accurate full-field simulations
for the mechanical fields developing in polycrystalline
aggregates [7–9]. Again, such fields are described on grids.

These capabilities bring with them massive amounts of
produced information. The digital storage space required
can reach terabytes, depending on the grid, time resolution,
dimensionality and fields of interest for a single experiment
or simulation. To exploit this information, it needs to be

stored, retrieved and analyzed efficiently; this has become
a challenge [10].

Further, a combination of the heterogeneity, nonlinear
behavior and fundamental physics (equilibrium and com-
patibility) causes the stress and strain in these materials
to localize into bands (plates) that percolate in complex
patterns through the material. Such patterns are observed
in the context of elastic composites with a complex micro-
structure [12], plastic polycrystalline alloys [13] and shape-
memory alloys [14]. An understanding of the properties of
the materials requires us to readily identify these bands, to
understand their interactions and to infer their conse-
quences. However, as noted above, much of the data gen-
erated in experiments is arrayed point-wise, in pixels,
voxels and grids. This makes it difficult to identify and ana-
lyze such bands.

These observations give rise to the question: what is a
suitable way to represent and analyze strain fields with local-

ized features?

In this work, we explore the efficiency of wavelets in rep-
resenting and analyzing strain data. By construction, these
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functions are compactly supported at different length-
scales, in both frequency and spatial domains, and are effi-
cient in the representation of heterogeneous fields with
localized features. The local multi-scale nature of wavelets
is reminiscent of the way in which strain evolves: namely,
from small-scale patches to bands. This similarity is the
motivation for utilizing wavelet analysis in the representa-
tion of microscale strains.

The canvas upon which this concept is presented is that
of polycrystals undergoing martensitic phase transforma-
tion. Such materials are capable of recovering strains
beyond their apparent elastic limit. This phenomena is
known as super- or pseudo-elasticity. Variants of martensite
induced by stress, admitting non-zero transformation
strains, rearrange to accommodate deformation without
application of additional stress. Upon unloading, the vari-
ants transform back to austenite, and the strains caused by
the rearrangement are recovered [15]. When considering a
polycrystal, on top of a kinematic incompatibility of the
phase mixtures within each grain, the different orientations
of neighboring grains give rise to an additional inter-grain
incompatibility. In turn, an intricate evolution of strain,
transformation and stress fields emerges [16,17,14]. Trans-
formation, in particular, initiates in local regions at grains
which are well oriented with the loading. The inter-
granular compatibility constraint dictates non-uniform
progression of transformation in confined bands
perpendicular to the loading. This extreme heterogeneity
of transformation induces extreme heterogeneity of stress,
concentrated at misoriented grains.

This work investigates the efficiency of wavelets in rep-
resenting, storing and analyzing microscale strain fields
and, in turn, identifying the relevant information dictating
the macroscopic behavior. This notion is examined via
experimental data on full-field strains of nitinol under ten-
sion, obtained by Daly et al. [17], and using a numerical
model derived by Richards et al. [14]. In a way, we treat
strains as images, and employ tools of image compression
in our analysis. To the best of the authors’ knowledge,
the only studies to use a reminiscent framework are those
of Teranishi et al. [10] and Wang and Mottershead [11].
The former developed a scheme based on image compres-
sion principles to reduce the microstructure data size,
whereas the latter used orthogonal polynomial-based shape
descriptors to analyze vibrations and full-field strains in
irregular domains.

While we focus on shape-memory polycrystals, we note
that this kind of localized deformation is also seen in the
context of polycrystalline plasticity and composites. Thus,
we believe that the lessons learnt in this work are applicable
to a broad class of materials.

The paper is composed as follows. Section 2 provides a
basic introduction to wavelets. The efficiency of wavelets
in representing experimental data sets is examined in Sec-
tion 3. Section 4 explores the capability of a compact set
of wavelets to characterize the interplay between the
strain, transformation and stress fields, and, in turn, the

macroscopic stress–strain relation, using a numerical model
of a polycrystalline aggregate. We complete the paper by
summarizing its main conclusions and observations in
Section 5.

2. Wavelet representation

A brief introduction to wavelet representation is given
here. For a more comprehensive review, the reader is
referred to Mallat [18] and Walnut [19]. Broadly speaking,
the main idea of representing a function is twofold. First,
the space is partitioned into a nested sequence of scales
at different resolutions. The function is then described in
terms of its average across the coarse scale and its details
across finer scales only in regions where the function is
changing. Using this multi-resolution representation, one
can focus attention on those specific regions where the
interesting features occur and ignore the rest. This is in
contrast with Fourier analysis, in which all regions of space
are treated equally. This difference is illustrated in Fig. 1.

Rigorously, wavelet representation consists of a mother
wavelet function w xð Þ of vanishing integral

R
R

w xð Þdx ¼ 0
and a scaling father function / xð Þ of a unit integralR

R
/ xð Þdxj j ¼ 1, both of which are locally supported. These

functions are uniquely related, such that the wavelet func-
tion is a linear combination of translations of compressed
scaling functions, i.e., w xð Þ ¼

P
n2Zbn/ 2x� nð Þ; bn 2 R.

The translations and dilations of w xð Þ and / xð Þ are defined
as

wj;k xð Þ ¼def
2j=2w 2jx� k

� �
; j; k 2 Z; ð1Þ

/j;k xð Þ ¼def
2j=2/ 2jx� k

� �
; j; k 2 Z: ð2Þ

A nested structure of approximation spaces for the square
integrable functions is obtained using the function sets
introduced in Eq. (2):

V j ¼ /j;k xð Þ; k 2 Z
� �

; f0g � . . . V j � V jþ1 � � � � � L2 Rð Þ:
ð3Þ

The orthogonal complement of V j within V jþ1 is spanned
by wj;k xð Þ
� �

, i.e.,

V jþ1 ¼ V j � W j; W j ¼ wj;k xð Þ; k 2 Z
� �

: ð4Þ

Fig. 1. Illustrative comparison between Fourier and wavelet transforms.
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