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Abstract

A microscopic phase field (MPF) model is formulated to describe quantitatively the core structure and energy of dislocations using ab

initio data as input. Based on phase field microelasticity theory implemented in the slip plane using Green’s function to describe the long-
range elastic interaction, the MPF model is a three-dimensional generalization of the Peierls model. Using the same generalized stacking
fault energy as input, the core structure and energy predicted for straight dislocations by the MPF model show complete agreement with
those predicted by the Peierls model. The ability of the MPF model to treat dislocations of arbitrary configurations is demonstrated by
calculating the structure and energy of a twist grain boundary in aluminum. After discrete lattice sampling a la Nabarro, the grain
boundary energy manifests Read–Shockley behavior for low-angle boundaries as well as deep cusps for high-angle special boundaries,
indicating a “Peierls torque friction” effect for grain boundaries that has the same physical origin as the Peierls lattice friction for
dislocation cores.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Dislocations and grain boundaries (GBs) are fundamen-
tal structural defects that dictate the physical and mechan-
ical properties of crystalline solids [1,2]. Defect engineering,
where dislocation configurations and grain boundary
characters are optimized to achieve specific properties or
functionalities, relies on knowledge of the fundamental
properties of these defects. Even after decades of research
since the discovery of dislocations in the 1930s, predicting
their basic properties (e.g. structure, energy and chemistry
of a dislocation core) still poses a great challenge [3–13].
While ab initio calculations and MD simulations are
powerful tools for studying GBs and dislocations, they

are limited by the size scale (for example, the low-angle
GBs studied in this paper have very large unit cells) and
by the complexities of the interactions that they can handle,
including chemical composition and timescale. For
example, empirical interatomic potentials are typically
hard stretched to handle more than two element types.
Ab initio calculations, while not limited in the element
types, are much more limited in size scale, and would also
be hard pressed to describe finite-temperature behavior
because of timescale limitations.

Because of these limitations, the most widely used
methods today in studying dislocations are still based on
continuum elasticity. There are two classes of approach
to dislocations: the Volterra model [14] and the Peierls
model [15] (see also Ref. [16] for a recent review). In the
Volterra model, a dislocation is treated as a geometrical
line singularity in a linear elastic continuum, so dealing
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with atomic displacements at the very core of the disloca-
tion is avoided. As a result, the size (cut-off radius) and
energy associated with a dislocation core are inputs rather
than outputs of the model. Discrete dislocation (DD) sim-
ulations [17–24], which are mostly based on the Volterra
framework, require the definition of the cut-off radius for
dislocation cores and the rules for core–core reactions
and junction formation. In the Peierls model, on the other
hand, a dislocation core is treated by two competing ener-
getic terms: a non-quadratic energy from materials residing
in the slipped region, described by the generalized stacking
fault (GSF) energy [25–28], which has non-convex parts,
and a quadratic elastic energy from materials in the
remaining crystal volume. The elastic energy term alone
favors an infinitely extended dislocation core, while the
inelastic non-convex energy term favors an infinitely con-
tracted core. The interplay of the two yields an equilibrium
core structure with a finite size and the associated core
energy. The inelastic energy in the Peierls model is a much
reduced (1-D [29] or 2-D [25]) section of a general potential
energy surface defined in a 3N-dimensional configurational
space (where N is the total number of atoms). In principle,
the critical information about core–core interactions
required by the DD simulations can be obtained from the
Peierls model. The calculation of the elastic energy in the
Peierls model, however, employs a dislocation density infi-
nite ribbon to infinite ribbon interaction kernel of log r
type, which limits its applications to straight dislocations.

The phase field model for dislocations [30] employs
the Khachaturyan–Shatalov (KS) microelasticity theory
[31–33], implemented using the exact 3-D Green function,
to describe the long-range elastic interaction. The volume
element to volume element interaction kernel of 1=r3 type
is more general than the previous log r-type interaction
kernel. For straight dislocations, these two integrals give
exactly the same elastic energy. However, when the symme-
try is broken in the dislocation line direction, the log r kernel
no longer works, but the phase field energy functional
continues to work as demonstrated [30,34].

However, because of the coarse-grained (10–100b; b as
Burgers vector) nature of the method, there has been no rig-
orous treatment of dislocation cores in these approaches.
The incorporation of the GSF energy into the phase field
model [34,35] has made it possible to treat dislocation core
structures at the sub-Burgers vector resolution, as in the
Peierls model, but the predicted core structure by the phase
field model [35] still does not converge exactly to the Peierls
model. In this paper we formulate a new approach, called
the microscopic phase field (MPF) model, taking full
advantage of the KS microelasticity theory mentioned
above, and show its equivalence to the Peierls model when
describing straight dislocations. We then demonstrate the
ability of the MPF model to treat more complex dislocation
core configurations, such as those seen in GB dislocation
networks. Being a 3-D generalization of the Peierls model,
the MPF model offers a general quantitative means of
predicting the defect size, energy and activation pathway

associated with defect nucleation, as well as treating dislo-
cation core–core interactions using ab initio electronic struc-
ture calculations as input.

In previous phase field dislocation models [30,34,35], the
inelastic displacement or strain fields are defined and
relaxed in the 3-D space. The local energy density in any
volume element is composed of an elastic energy and a
crystalline (or GSF) energy. Since, by definition, the crys-
talline energy reduces to the elastic energy at a small strain
value, there is a possible overcounting in the total energy.
The Peierls model, on the other hand, does not have this
ambiguity since it treats the two energies in separate space:
an atomic-layer thin slip plane, where the displacement is
inelastic and is treated by a non-convex (the GSF) energy,
and the remaining space as a linear elastic body fully
described by the quadratic elastic energy. In the present
model we formulate a new elasticity expression that, similar
to the treatment in the Peierls model, confines the inelastic
displacement strictly to the slip plane and resides the elastic
energy in the two infinite half spaces. This, together with
further removal of the gradient energy term, allows the
MPF model to converge to the Peierls model.

The MPF model has a spatial resolution of dislocation
core size, similar to the Peierls model. At such a length
scale, as discussed earlier, the equilibrium core width is bal-
anced by the elastic energy and the inelastic misfit energy.
This is different from the mesoscale phase field dislocation
models, where a conventional gradient energy is required
to produce a smooth (though artificially wide, mesoscale
size) dislocation core. However, a gradient term with dis-
tinct physical meaning could still be present at the micro-
scopic scales. For example, a typical gradient form was
shown in a continuum transition from a lattice Greens
function formulation for Peierls dislocation [36]. Such a
form was also found in the transition of a discrete spinodal
decomposition model [37] to a continuum one [38] in phase
transformation theory. More discussions may be found in
Ref. [16].

2. Microscopic phase field dislocation model

In the Peierls model, a dislocation is described by a 1-D
spatially continuous distribution of (inelastic) slip displace-
ment traversing a dislocation core. The displacement, mostly
local to the core, results in an atomic misfit energy to the
crystal, due to local disregistry of atomic positions above
and below the slip plane, and a long-range elastic energy.
Such a picture can be generalized to a field description of
strain field. This results in the basic order parameter in the
MPF dislocation model, �ijðrÞ, defined as an inelastic strain
field with reference to a perfect crystal. It is expressed as

�ijðrÞ ¼
XN

p¼1

�p
ijgpðrÞ ð1Þ

over all active slip systems, each characterized by a phase
field gp and an associated unit (slip type) strain tensor
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