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Abstract

It is shown that assumed anelastic relaxation-time spectra can be recovered reliably from simulated loss—-modulus curves that include
noise by nonlinear least-squares fitting. The same method is used to obtain spectra for published experimental data on a metallic glass.
The results provide a comprehensive kinetic picture of the atomically quantized hierarchy of shear transformation zones (STZs). We
resolve a window of STZs consisting of 25-33 atoms, and a simultaneous fit yields the Arrhenius behavior for each size. The correspond-
ing activation energies are 1.75-2.31 eV. The high activation energy that is often observed above T, is shown to be an artifact of the
temperature dependence of the high-frequency shear modulus. The hierarchy of STZ sizes is consistent with both o and f relaxations,
suggesting that they originate from the same microscopic mechanism.
© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A glassy structure can exist in many materials classes,
e.g. metals, polymers, ceramics and semiconductors.
Because they lack long-range order, glasses have long
posed challenges to scientists. Their static structure is still
a subject of active experimental and computational
research. Their response to a time-varying field, e.g. elec-
tromagnetic or mechanical, is an important probe of their
physical behavior, as it allows for experiments that span
a wide range of time constants.

The loss modulus, i.e. the imaginary part of the dynamic
elastic modulus, is a probe of the degree of dissipation in a
material [1]. For a single process with relaxation time
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constant 7, the loss modulus is a Cauchy function of the
angular frequency of the applied force, @, and peaks at
1/z. However, it is generally observed to be a broader func-
tion of w than a Cauchy function. It has been assumed that
relaxation-time spectra cannot be obtained directly from
measured loss moduli (or dielectric response), primarily
because of the intrinsic width of the Cauchy function.
Therefore, a stretched exponent, exp(—(t/1)”) [2-4], where
7 and f are constants, or other functions are often used
as empirical descriptions of the time-dependent relaxation
[5,6], which amounts to an a priori assumption about the
shape of the relaxation-time spectrum. A tail observed at
high frequencies and fixed temperature, or at low tempera-
tures and fixed frequency, has been attributed to relaxation
processes that differ qualitatively from those responsible
for the main part of the peak [7-11]. While molecular
dynamics simulations have been employed to describe the
dynamic response of a glass [11-13], caution should be
exercised in their interpretation, since they have to be
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conducted at strain rates and stresses that are far higher
than in conventional experiments, at which the deforma-
tion mechanism may differ [14]. A comprehensive micro-
scopic model that can be compared to experimental
results in quantitative detail is lacking.

Based on observations in 2-D [15] and 3-D [16] physical
analogues, viscoelastic deformation of metallic glasses has
been modeled in terms of shear transformations [14,17].
In the low-stress regime, a shear transformation zone
(STZ) [18] is an equiaxed atomic cluster that undergoes
irreversible shear, while its surroundings deform elastically.
We have recently obtained [19] anelastic relaxation-time
spectra directly from quasi-static anelastic relaxation
measurements in amorphous Alge gNis 7Y 5 (at.%) without
making any a priori assumption on the shape of the spec-
tra. These exhibited peaks, manifesting an atomically
quantized hierarchy of STZs. The size-density distribution
of potential STZs was obtained from the data, and is
consistent with our theoretical model [20]. In the present
work, we use a similar approach to analyze the dynamic
behavior of a metallic glass. We first generalize a method
of direct spectrum analysis (DSA) [21], a nonlinear
least-squares fitting method developed to obtain relaxa-
tion-time spectra from quasi-static anelastic data. We
demonstrate that this method can reliably recover assumed
spectra from simulated dynamic data that include noise,
then apply the method to published data [22]. The
temperature-dependent spectra we obtain resolve STZs
by the number of atoms they comprise. The simultaneous
fits we perform exhibit Arrhenius behavior for each STZ
size, from 25 to 33 atoms, and yield the corresponding
activation energies. The value of the transformation shear
strain, 0.15, is obtained independently. Commonly
observed phenomena are explained quantitatively by the
present analysis.

2. Data analysis methodology

In order to validate the generalization of DSA [21] to
dynamic data, we created simulated data sets, using

assumed relaxation-time spectra, f*(t), consisting of several
Gaussian peaks. An example is shown in Fig. 1(a), in which
the spacing between the peaks is chosen to be irregular in
the interest of generality. Also shown in Fig. 1(a) is the cor-
responding simulated loss modulus obtained by numerical
integration,

B =Ex [ 1)

where Ej is the high-frequency modulus. Normally distrib-
uted random noise with a standard deviation of 2 x 1072
was added. To mimic typical experimental conditions, the
E” curves were truncated to the range wmin =1 x 1073 to
Omax = 9 s~ prior to their analysis. Because of the intrinsic
width of the Cauchy function, these data contain spectrum
information for reciprocal relaxation times that extend
beyond this range.

DSA was subsequently performed by least-squares fit-
ting the simulated data using the primal-dual interior-point
filter line search algorithm, which allows the handling of
problems with large numbers of inequality constraints
[23]. The software package AMPL [24] was used with a
nonlinear solver IPOPT [23]. The digitized data set for each
temperature was fitted with the expression
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with the f; being fitting parameters, N = 70 and all 7, fixed
and logarithmically spaced, In(t;/t; _ 1) = Aln(z). The cor-
responding spectrum is given by

f(w) = fi/(Ey x Aln7) 3)

As an initial guess, all f; were set equal to 0.01, and it
was verified that the fitting results were independent of this
choice. The analysis presented below was conducted for the
7 range of Tmin = (Wmax) /4 10 Tmax = 4(@min) ', Which
provided the most comprehensive results.

Fits were performed with different prescribed tolerance
targets, such that:
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Fig. 1. (a) Assumed relaxation-time spectrum, f“(t), and corresponding simulated loss modulus, E(w)/E,, with noise included. The DSA fit to the
truncated data is also shown. (b) 1 — R for DSA fits as a function of the prescribed tolerance for the simulated loss modulus of (a). A similar curve was
created to determine the best fit for each experimental E"(w) curve. (c) Assumed spectrum (same as in Fig. 1(a)) with fitting results obtained from the
simulated data for three tolerance values. The tolerance value of 107, at which 1 — R? drops precipitously (Fig. 1(b)), yields the best fit.
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