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Generalisations of classical bending and extension are established for pre-stressed compressible elastic
plates. In respect of the analogue of extension, the associated quasi-front is shown to be either advancing
or receding, contrasting with the classical case. For the generalisation of bending, the long wave limit of
the fundamental mode is non-zero; thus, unlike its classical counterpart, an associated quasi-front can,
therefore, exist and is again noted to be either advancing or receding. In both cases appropriate leading
order and higher order corrected governing equations are obtained. The ideas are illustrated through in-
vestigation of a model problem involving impact edge loading. For the generalised theory of bending, the
leading order governing equation for the mid-surface deflection is used to establish the classical equation
for wave propagation along an infinite string, with its second order refinement providing a second order
correction. Motion within the vicinity of the thickness shear and thickness stretch resonance frequencies
is also investigated. Special cases, in which either a stretch resonance and shear resonance frequency are
very close, or the speeds of longitudinal and shear waves are very close, are also discussed.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Lower dimensional plate theories have helped to elucidate qual-
itative features of static and dynamic structural response for many
years. For the most part, certainly until relatively recently, these the-
ories were only established within the framework of linear isotropic
elasticity. The first attempts to extend these theories to include the
influence of pre-stress were in [1], to which the reader is referred for
some historical background. In [1] generalisations of classical bend-
ing and extension are established for a pre-stressed, incompressible
elastic structures. Later, in [2], models for motion close to the cut-off
frequencies were derived within the same constitutive framework.
These models, to help, elucidate two-dimensional motion, were later
extended to models for three-dimensional motion in incompressible
pre-stressed layers, see [3,4] and also to problems involving slightly
compressible elastic plates, see [5,6]. All of the above studies use
the method of long wave asymptotic integration first developed in
[7]. Our intention is to extend such studies and investigate the com-
pressible pre-stressed problem. Within this context it is far easier
to make direct comparison with the classical theories of bending
and extension. Additionally, an interesting case arises in connection
with motion near the shear and stretch resonance frequencies when
the speeds of the shear and longitudinal waves are close. This is a
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phenomenon not possiblewithin the classical linear isotropic context
without strong convexity being violated, the bulk modulus being
negative and Poisson's ratio tending to minus infinity in the limit of
the speeds being equal.

This paper is organised as follows. In Section 2 the governing
equations are reviewed and the dispersion relation associated with
harmonic waves propagating in a layer with zero incremental trac-
tion on its faces is established. In Section 3, this relation is first very
briefly investigated numerically and then long wave approximations
are presented. In contrast to the classical linear isotropic case, the
long wave limit of the anti-symmetric fundamental mode, the so-
called long wave low-frequency limit, is non-zero. The implication is
that an associated quasi-front exists. The long wave high-frequency
region is also investigated, this being within the vicinity of the thick-
ness shear and stretch resonance frequencies.

In Section 4, asymptotic integration is carried out in respect
of low-frequency long wave motion, providing theories which are
analogous to classical bending and extension. In the anti-symmetric
motion case, the counterpart of classical bending, the leading order
equation for the mid-plane deflection is shown to take the form of
the classical wave equation. This second order equation is refined
and an associated fourth order equation established. It is essential
to use this higher order correction within the vicinity of the quasi-
front. These ideas are illustrated through the setting up and solving
of a model problem involving impact edge loading. In addition, it is
demonstrated that if the normal pre-stress is zero, and the in-plane
pre-stress a pure tension, the leading order equation then reduces to
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that of the classical equation for wave propagation along an infinite
string. Within this context, the refined equation for the mid-surface
deflection provides a higher order correction for the classical string
equation. Asymptotic integration for symmetric motion is also car-
ried out.

In Section 5, asymptotic integration is carried out for motion
within the vicinity of either the thickness stretch or thickness shear
resonance frequencies. In all cases, governing equations are derived
for the long wave amplitudes. In Section 6, the first of two special
cases is considered, namely the case in which one of the shear and
one of the stretch resonance frequencies are very close. Modifica-
tions of the asymptotic integration procedure are made, with series
expansions for the displacement components now in powers of the
scaled wave number, rather than squares. The second special case,
namely that for which the speeds of shear and longitudinal wave
propagation coincide, is discussed in Section 7.

2. Governing equations and the dispersion relation

In this section we briefly review the appropriate governing equa-
tions and establish the dispersion relations; for further details the
reader is referred to [8,9]. We consider a homogeneous, isotropic,
compressible elastic layer of thickness 2h and infinite lateral extent.
The layer possesses an initial unstressed configurationBu and is sub-
ject to a homogeneous static deformation, resulting in the equilib-
rium pre-stressed stateBe. A small time-dependentmotion u=u(x, t)
is then superimposed on Be, resulting in the current configuration
Bt . A Cartesian coordinate system Ox1x2x3, coincident with the prin-
cipal axes of deformation in Be, is chosen, with Ox2 normal to the
layer's upper surface and origin O located in the mid-plane. The three
principal stretches associated with the primary static deformation
Bu → Be are denoted by �1,�2 and �3. We utilise a plane-strain as-
sumption, with u3 ≡ 0 and u1, u2 independent of x3. The governing
equations of motion may be derived, see for example [9], in the form

�11u1,11 + �2u1,22 + �u2,12 = �eü1,

�1u2,11 + �22u2,22 + �u1,12 = �eü2, (2.1)

within which

�ij =Aiijj, i ∈ {1, 2}, �1 =A1212, �2 =A2121,

� = �12 + �2 − �2 (2.2)

with �i, i ∈ {1, 2} the principal Cauchy stresses in Be, �e the material
density in Be and Aijkl components of the fourth order elasticity
tensor. A comma and a dot indicate differentiation with respect to
x1, x2 and time t, respectively. Linearised measures of incremental
traction, with outward unit normals along Ox1 and Ox2 in Be, have
components

�1(1) = �11u1,1 + �12u2,2, �2(1) = (�2 − �2)u1,2 + �1u2,1,
�1(2) = �2u1,2 + (�2 − �2)u2,1, �2(2) = �12u1,1 + �22u2,2. (2.3)

Our initial concern is a layer with incrementally traction free up-
per and lower boundaries, indicating that �1(2)(±h) = �2(2)(±h) = 0.
Solutions of the equations of motion are sought in the form of the
travelling harmonic wave

(u1,u2) = (A,B)ekqx2eik(x1−vt), (2.4)

where k is the wave number, v is the phase speed and q is to be
determined.

Substituting the solutions (2.4) into the equations of motion (2.1),
a system of linear homogeneous equations is obtained. This system

possesses a non-trivial solution provided

�22�2q
4 + {�2 − �22(�11 − v̄2) − �2(�1 − v̄2)}q2

+ (�11 − v̄2)(�1 − v̄2) = 0, v̄2 = �ev
2. (2.5)

Solutions for the displacement components u1 and u2 may be repre-
sented as linear combinations of the four linearly independent func-
tions exp(kqix2) and exp(−kqix2), i ∈ {1, 2}, where ±q1, ±q2 are the
four generally distinct and non-zero roots of (2.5). Substituting these
solutions into the traction free boundary conditions, a system of four
linear equations is obtainable. This system may be decomposed into
two independent systems of two linear equations, corresponding to
so-called anti-symmetric and symmetric motion. These two systems
provide the two dispersion relations, which are expressible in the
forms

q1(	1 − 	2q
2
2) tanh(q1
) = q2(	1 − 	2q

2
1) tanh(q2
) (2.6)

and

q1(	1 − 	2q
2
2) tanh(q2
) = q2(	1 − 	2q

2
1) tanh(q1
), (2.7)

respectively, where 
 = kh and

	1 = (�11 − v̄2)(Ea − v̄2), 	2 = �22(Es − v̄2) (2.8)

with

Ea = �1 − (�2 − �2)
2

�2
, Es = �11 − �2

12
�22

. (2.9)

In the case of anti-symmetric motion, u1 and u2 are expressible
in terms of one arbitrary constant Ã, yielding

u1 = {H(q2) sinh(q2
) sinh(kq1x2) − H(q1) sinh(q1
) sinh(kq2x2)}Ã,

u2 = {F(q1)H(q2) sinh(q2
) cosh(kq1x2)
− F(q2)H(q1) sinh(q1
) cosh(kq2x2)}Ã (2.10)

with the exponential factor eik(x1−vt) incorporated into Ã and F(q),
H(q) defined by

F(q) = �11 − v̄2 − �2q2

�iq
, H(q) = �(�22iqF(q) − �12). (2.11)

In the symmetric case, analogous solutions for u1 and u2 may be
obtained by replacing sinh with cosh and cosh with sinh in (2.10).
Finally in this section, necessary and sufficient conditions for strong
ellipticity can be expressed in the form [9]

�ii >0, �i >0, (�11�22)
1/2 + (�1�2)

1/2 ± �>0, i ∈ {1, 2}. (2.12)

3. Analysis of the dispersion relations

The dispersion relations (2.6) and (2.7) were first derived in [10],
with a long wave asymptotic analysis later carried out in [11]. This
section contains only the essential asymptotic results required in this
paper. Our attention is focussed on long wave motion, implying that

 → 0. There are two types of asymptotic approximations needed
to describe long wave motion, namely low- and high-frequency. The
modes associated with these types of motion are usually referred to
as fundamental modes and harmonics, respectively.

For numerical illustrations we make use of either a compressible
neo-Hookean or Blatz-Ko material. The compressible neo-Hookean
material has a strain energy function given by

W = �
2
(�2

1 + �2
2 + �3

3 − 2 ln(�1�2�3)) + �
2
(�1�2�3 − 1)2, (3.1)
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