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The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid
model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral
region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential
equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall
shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield
stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness
are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear,
width of the plug flow region and longitudinal impedance increase when the yield stress increases. It
is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness
of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal
impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase
in the longitudinal impedance are considerably lower for the present two-fluid model than those of the
single-fluid model.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Blood is a multi-component material which consists of gel-like
formed elements in aqueous plasma: red blood cells (RBCs 98% by
volume), and some white blood cells (WBCs), and platelets and a
variety of lipoproteins. Plasma is an aqueous solution of various pro-
teins, including clotting factors (fibrinogen, prothrombin, factor-VII,
factor-XIII, etc.) and various ions [1]. RBCs are very numerous and
morphologically very simple. They contain hemoglobin which trans-
ports oxygen around the body [2]. Henderson and Thurston [3] have
reported that platelets are very small but extremely important in
relation to blood coagulation both in the healing of wounds and in
the formation of thrombi.

Under normal condition, blood circulates within the body's vas-
cular network. However, it has an inherent tendency to clot that is
balanced by endothelium. The clot formation occurs for various rea-
sons: endothelial injury, endothelial dysfunction, or flow stagnation
and recirculation among others. Clot formation occurs when the ini-
tiating stimulus exceeds certain threshold. Clots are formed at the
end of a series of interacting biochemical processes: platelet adhe-
sion, activation and aggregation, coagulation (extrinsic and intrinsic),

∗ Tel.: +6046533964; fax: +6046570910.
E-mail address: sankar_ds@yahoo.co.in

0020-7462/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijnonlinmec.2008.12.008

polymerization of fibrin monomers formed from fibrinogen, and
cross linking of the fibrin polymer strands to form a fibrin network.
A detailed overview of the process of clot formation and lysis is given
in Anand et al. [1,4]. Fogelson [5] formulated continuum models for
platelet aggregation and analyzed its mechanical properties. Fogel-
son and Guy [6] extended these continuum models further to study
the platelet–wall interactions of platelet thrombosis, using numeri-
cal solution.

Mann et al. [7,8] discussed extensively the models of blood co-
agulation and the dynamics of thrombin formation. Attaullakhanov
et al. [9] have experimentally analyzed the spatio-temporal dynam-
ics of blood coagulation and pattern formation. Panteleev et al. [10]
developed mathematical models for the study of blood coagulation
and platelet adhesion in their review and provided some clinical ap-
plications of the mathematical models. Lawson et al. [11] studied
the complex-dependent inhibition of factor VIIa by antithrombin III
and heparin. Lawson et al. [12] built an experimental model for the
tissue factor pathway to thrombin.

As the seminal contribution to the study of shear thinning vis-
coelastic nature of blood, Thurston [13] developed an extended
Maxwell model which is applicable to one-dimensional flow. Anand
and Rajagopal [14] have studied extensively a shear-thinning vis-
coelastic fluid model for blood flow within a thermodynamic frame-
work that takes cognizance of the fact that viscoelastic fluids can
remain stress free in several configurations. Anand et al. [4] devel-
oped a mathematical model for the formation and lysis of blood
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clot. Anand et al. [1] built a viscoelastic model within the thermo-
dynamic frame of reference for analyzing the mechanics of a coarse
ligated plasma dot.

In modern medicine, with the evolution of coronary balloon an-
gioplasty, there has been considerable increase in the use of catheters
of various sizes. Coronary catheter probes are widely used as they
provide valuable information about arterial anatomy and the hemo-
dynamic significance of stenosis [15]. Catheter probes have also been
used in conjunction with computational fluid dynamics to study
the relationship between the flow patterns and atheroma forma-
tion [16], for which the accurate measurement of velocity is crucial.
Typically, a catheter consists of a long flexible cylindrical tube at
the tip of which various functional tools (e.g. pressure transducers,
flow meters, inflatable balloons, etc.) are positioned. The purpose of
catheters is to accurately measure the arterial pressure or pressure
gradient, or to clear short occlusions from the walls of the stenosed
artery [17]. The method of catheterization is to insert the catheter
into a peripheral artery and then position the device into the de-
sired part of the arterial network by passing an appropriate length
of the catheter through the artery [18]. The insertion of a catheter
into an artery leads to the formation of an annular region between
the catheter wall and the arterial wall. The insertion of a catheter
into an artery alters the flow field, modifies the pressure distribution
and hence increases the resistance to flow [19].

Back [20] and Back et al. [21] have studied the important hemo-
dynamic characteristics like the wall shear stress, pressure drop
and frictional resistance in catheterized coronary arteries under the
normal and pathological situation of a stenosis present. The effect
of catheterization on various flow quantities in a curved artery is
studied by Jayaraman and Tiwari [22]. Daripa and Dash [17] have
performed the numerical study of pulsatile blood flow in an ec-
centric catheterized artery using a fast algorithm. Apart from the
above investigations, some more attempts [23–25] have been made
to study the blood flow through catheterized arteries, treating blood
as a Newtonian fluid. But, blood being a suspension of erythro-
cytes; it exhibits remarkable non-Newtonian behavior when it flows
through narrow blood vessels at low shear rates [26–28]. Sankar and
Hemalatha [19] and Dash et al. [26] have estimated the increase in
the resistance for the blood flow through catheterized arteries for
steady and pulsatile flow by treating blood as a non-Newtonian fluid.

Casson [29] examined the validity of Casson fluidmodel in studies
pertaining to the flow characteristics of blood and reported that at
low shear rates the yield stress for blood is non-zero. Casson fluid
model is a non-Newtonian fluid model with non-zero yield stress.
It has been demonstrated by Scott Blair [30] and Copley [31] that
the parameters appropriate to Casson fluid-viscosity, yield stress and
power-law are adequate for the representation of the simple shear
behavior of blood. It has been established by Merrill et al. [32] that
Casson fluid model holds satisfactorily for blood flowing in tubes of
diameter 130–1300�m. Charm and Kurland [33] pointed out in their
experimental findings that the Casson fluid model could be the best
representative of blood and that it could be applied to human blood.
Further, Scott Blair and Spanner [34] reported that blood behaves
like a Casson fluid in the case of moderate shear rate flows.

It has been pointed out by Scott Blair [35] and Iida [36] that
though it is possible to model the blood flow by both Casson fluid
model and Herschel–Bulkley fluid over the range where both models
are valid, Casson fluid model is well suited and simple to apply for
blood flow problems. Thurston [37] pointed out that the viscoelastic
nature of blood is less prominentwith increasing shear rate. Thurston
[38,39] has also observed that there exists a critical shear rate be-
yond which the assumptions of linear viscoelasticity and Newtonian
behavior of blood cease to hold and related the non-linear behavior
to the microstructural changes that occur in blood with increasing
shear rate. Hence, it is appropriate to assume the non-Newtonian

fluid characterizing the blood in the core region of the two-fluid
blood flow model as Casson fluid rather than as Herschel–Bulkley
fluid model or as a viscoelastic fluid model.

Many researchers have used Casson fluid model for mathemat-
ical modeling of blood flow through narrow arteries at low shear
rates for different flow situations. Chaturani and Ponnalagar Samy
[40] have analyzed the pulsatile flow of Casson fluid for blood flow
through stenosed arteries using perturbation method. Dash et al.
[26] have studied the steady and pulsatile flow of Casson fluid for
blood flow through catheterized arteries using perturbation analysis
and they have computed the increase in the resistance to flow due
to catheterization and non-Newtonian effects.

Some researchers [41–43] propounded that for blood flowing
through small vessels, there is erythrocyte-free plasma (Newtonian)
layer adjacent to the vessel wall and a core layer of a suspension of
all erythrocytes (non-Newtonian). Accepting this idea, several stud-
ies [43–47] revealed that the existence of the peripheral layer has
some significance in the functioning of the flow characteristics in the
arterial system. Hence, in this paper, we study the pulsatile flow of a
two-fluid model for blood flow through catheterized narrow arteries
(of diameters 0.02–0.2mm) at low shear rates (�̇ <10/s), assuming
the suspension of all the erythrocytes in the core region of the blood
vessel as a Casson fluid and the plasma in the peripheral layer as a
Newtonian fluid. The layout of the paper is as follows.

Section 2 formulates the model mathematically, while Section 3
non-dimensionalizes the basic governing equations and the bound-
ary conditions. The resulting implicit system of non-linear partial
differential equations is solved using perturbation method in Section
4. The effects of pulsatility, catheterization, non-Newtonian nature
of blood and peripheral layer thickness on various flow quantities
are analyzed with some possible applications in Section 5. The re-
sults are summarized, and, some scope and possible extension of the
present study are mentioned in Section 6.

2. Formulation of governing equations

Consider an axially symmetric, pulsatile, laminar, and fully de-
veloped flow of blood in an artery of radius R̄ in which a catheter of
radius kR̄ (k <1) is introduced coaxially and the blood is modeled as
a two-fluid model with the suspension of all the erythrocytes in the
core region as a Casson fluid and the plasma in the peripheral region
as a Newtonian fluid. It is assumed the pulsatile flow in the artery
is due to a prescribed periodic pressure gradient along the axis of
the artery. The length of the artery is assumed to be large enough
when compared to its diameter so that the entrance, end and spe-
cial wall effects can be neglected. The cylindrical polar coordinate
system (r̄, �̄, z̄) is used to study the flow, where r̄ and z̄ denote the
radial and axial coordinates and �̄ is the azimuthal angle. The ge-
ometry of the catheterized artery is shown in Fig. 1. It can be shown
that the radial velocity is negligibly small in magnitude and may
be neglected for low Reynolds number flow. The basic momentum
equations in this case simplifies to
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where p̄ denotes the pressure; �̄C and �̄N denote the density of the
Casson fluid and Newtonian fluid, respectively; �̄C and �̄N denote the
shear stress of the Casson fluid and Newtonian fluid, respectively; ūC
and ūN denote the fluid's velocity in the core region and peripheral
region, respectively; t̄ denotes the time and R̄1 is the radius of the
core region of the artery. The relations between the shear stress and
strain rate of the fluid in motion in the core region (Casson fluid)
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