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Two approaches to the kinematic structuring of constitutive models for highly elastic flows of polymer
melts have been examined systematically, assuming either: (1) additivity of elastic and viscous velocity
gradients or (2) multiplicability of elastic and viscous deformation gradients. A series of constitutive mod-
els were compared, with differing kinematic structure but the same linear responses in elastic and viscous
limits. They were solved numerically and their predictions compared, and they were also compared to
those of the Giesekus model. Several variants, previously proposed as separate models, are shown to be
equivalent and qualitatively in agreement with experiment, and therefore a sound basis for construction
of models. But the assignment of viscous spin is critical: if it is assumed equal to the total spin with
approach (1), or equal to zero with approach (2), then unphysical viscoelastic behaviour is predicted.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial forming processes for thermoplastic polymers fre-
quently involve large deformations in a time/temperature range
where flow is highly elastic. Physically, this arises from the great
lengths of the molecules. All molecules with molar mass M larger
than a monomer-specific critical value Me are topologically con-
strained by their neighbours, linking them into a continuous molec-
ular network even in the molten state—that is, when they are
amorphous and above the glass transition temperature Tg . Con-
nectivity is provided by molecular entanglements. Such a network
has an elastic, rubber-like, constitutive response when unrelaxed.
It can relax fully, but only by the tortuous process of molecular
disengagement that has come to be known as “reptation”, with
an associated relaxation time �d. Industrial polymers usually have
M?Me, and �d ∝ (M/Me)

� where � ∼ 3.4 [30], so relaxation times
are exceptionally long compared to other viscoelastic liquids. More-
over, economic necessity requires industrial forming processes for
polymers to be as rapid as possible. Consequently polymers are
frequently melt-processed on time scales not far from �d.

In such flows, elastic stretch of the entanglement network is
only partially relaxed. This is especially true of processes such as
stretch-blowmoulding and thermoforming of sheets where substan-
tial elasticity of the melt is advantageous to stability of the process.
Network stretch, and hence mutual alignment of the molecules, is
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also an essential requirement for stress-induced crystallisation (e.g.
during blow moulding of polyester bottles or spinning of polyamide
fibres). Moreover, the complexity of non-linear viscoelastic mate-
rial behaviour is often combined with large-scale geometrical non-
linearity. An example of this is the finite rotation encountered when
the flow has a large shear component, for example around rigid par-
ticles in modelling of the forming of particulate-reinforced polymers.

This paper is motivated by the engineering need to model highly
elastic polymer flows, in a manner suitable for optimisation in the
context of numerical simulation of polymer processes. Clearly, nu-
merical modelling of such processes requires a constitutive model
that is robust under arbitrarily large deformations and in the pres-
ence of a high degree of elasticity. The question of how best to
achieve this remains a matter of dispute. A particular difficulty is
that solutions have been proposed in two different branches of the
literature—solid mechanics and fluid mechanics—and hence it has
been unclear how they are all related. The present note aims to clarify
the issues, and assist the development of suitable constitutive mod-
els, by comparing systematically the kinematic assumptions embed-
ded in various approaches, and highlighting how they are related.

Previous authors attempting to capture accurately, but empiri-
cally, highly elastic flows of amorphous polymers have adopted a
range of strategies. Some have ignored the problem altogether and
have approximated the polymer response as wholly viscous [15,6]
or wholly elastic but with rate and temperature-dependent param-
eters [31,23]. While it is possible to fit experimental data for a given
monotonic strain sequence in this way, it is clearly impossible to cap-
ture an arbitrary deformation history with such approaches. Other
authors proposing finite deformation viscoelastic models, in view of
the lack of experimental evidence for how the antisymmetric part
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of the velocity gradient (i.e. the spin) should be apportioned between
viscous flow and elastic deformation, have cautiously declined to
speculate on this point and their proposed models are incomplete
in this respect [34,1,9,22].

Those authors that have proposed complete three-dimensional
models have adopted one of three approaches. One group have em-
ployed models based on additive split of the rate of deformation
tensor [25,26] together with the assumption of zero viscous spin
[21]. Another group assumed multiplicative decomposition of the
deformation gradient [16,20], together with a particular, convected,
interpretation of the viscous velocity gradient and the assumption
of zero viscous spin [4,5,11]. Finally, several authors have employed
models expressed in terms of convected derivatives of stress, such
as the upper convected Maxwell model (UCM), see for example [28],
or the more robust Giesekus modified UCM or a finite extensibility
adaptation of it [10]. In addition, the literature provides a number
of physically based models with similar structure, which quite suc-
cessfully capture polymer melt viscoelasticity under a wide range of
conditions. An attractive feature of these is that they embody aware-
ness of molecular architecture. Examples are the Pom-Pom model
[24] for branched molecules and the Rolie-Poly model [17] for linear
molecules. However, these do not yet capture accurately the highly
elastic extensional flows of interest here, without empirical exten-
sions. For authoritative reviews of polymer melt constitutive models
to date, and their links to molecular structure, the reader is referred
to [2,19,8].

The present paper considers classes of constitutive models that
may be conveniently fitted to experimental data under relevant con-
ditions. These models are kinematically structured a priori to cap-
ture naturally the geometrical non-linearity, before insertion of a
description of the physical response, that may be either empirical
or physically inspired. Two approaches to their kinematic structure
are compared in this work: (1) approach I is based on additive de-
composition of the velocity gradient tensor, while (2) approach II
is based on multiplicative decomposition of the deformation gradi-
ent tensor. In order to highlight the consequences of purely geomet-
ric non-linearity arising from different kinematic assumptions made,
models considered here based on each approach are linear in both
the elastic and viscous limits. Thus elastic response is taken to be
neo-Hookean, while viscous response is taken to be Newtonian.

The Giesekus model provides a convenient benchmark, as its vari-
able parameter � (0���1) allows several models to be recovered
from a single equation.

2. Approaches

Consistent with the aim of modelling highly elastic flows where
stresses may be sufficient for detectable volume change to occur, in
the models considered here there is a reversible volumetric contri-
bution to the deformation gradient. Thus we begin with a multiplica-
tive decomposition of the deformation gradient F into its volumetric
(Fvol) and isochoric (F̂) parts [12]

F = FvolF̂ where F̂ = J−1/3F and J = det F. (1)

J is the volume ratio. The viscoelastic response is then all contained
within the isochoric part of the velocity gradient F̂. Its correspond-
ing left Cauchy–Green tensor and velocity gradient, and the latter's
symmetric (deformation rate) and skew-symmetric (spin) parts are
defined by

B̂ = F̂F̂T, L̂ =
•
F̂ F̂−1 and D̂ = sym[L̂] and Ŵ = skew[L̂]. (2)

In order to avoid unnecessary complexity, we now restrict attention
to only those materials whose response to volume change is purely
elastic (a good approximation in the case of elasto-viscous polymer

melts). In the two limits of fast (elastic) deformation, or slow (vis-
cous) deformation, respectively, the deviatoric Cauchy stress may
then be written as

r̂= r̂(B̂, J) or r̂= r̂(D̂, J), (3)

respectively, where the two functions must be determined by
experiment. In the general case of an intermediate rate (viscoelastic)
deformation, we assume that “elastic” and “viscous” deformation
gradients exist, F̂E and F̂V, such that the instantaneous Cauchy stress
is given in terms of the left Cauchy–Green tensor and the rate of
deformation derived from them, respectively, thus

r̂= r̂(B̂E, J) and r̂= r̂(D̂V, J). (4)

Completion of a three-dimensional constitutive model requires
knowledge of how B̂E and D̂V are related to F̂.

2.1. Approach based on additive decomposition of the velocity
gradient (Approach I)

In this approach, additive decomposition of the isochoric velocity
gradient L̂ into elastic L̂IE and viscous L̂IV parts is assumed a priori

L̂ = L̂IE + L̂IV hence D̂ = D̂I
E + D̂I

V and Ŵ = Ŵ I
E + Ŵ I

V, (5)

where superscript I is introduced to distinguish elastic and viscous
quantities from their counterparts in approach II presented in the
next section. The second of Eq. (5) expresses the additivity of rates
of deformation proposed by Nemat-Nasser and others, where D̂I

V is
defined by a flow rule (see Section 3).

There is no attempt to attribute precise physical meaning to
F̂I
E and F̂I

V in terms of macroscopic response. In terms of polymer
physics, F̂I

E relates to molecular chain configurations, whose pertur-
bation from equilibrium at any instant gives rise to the entropic
stress dependent on B̂I

E. To exploit Eq. (5), we make use of the fol-
lowing kinematic identity for the time derivative of B̂I

E with respect
to a fixed reference frame

•
B̂I
E =(F̂I

E(F̂
I
E)

T)• = L̂IEB̂
I
E + B̂I

E(L̂
I
E)

T, (6)

where superscript T denotes the usual transpose, and the definition
of the co-rotational (Jaumann) derivative of B̂I

E

◦
B̂I
E ≡

•
B̂I
E −ŴB̂I

E + B̂I
EŴ . (7)

There is no means of completing the model rigorously. An assump-
tion must be made concerning apportionment of spin Ŵ between
elastic and viscous parts of the velocity gradient, in the third of Eq.
(5). Here we consider two possible cases:

(i) Case 1: We follow Giesekus' plausible physical argument for
polymers that L̂IV must be an inner variable of the configurational
state, as expressed by symmetric tensor B̂I

E, and hence must
itself be symmetric, giving Ŵ I

V = 0 [13]. Hence, it follows from
Eq. (5) that Ŵ I

E = Ŵ . Then, combining Eqs. (6) and (7) with the
a priori assumption Eq. (5) gives

(B̂I
E)

◦ = D̂I
EB̂

I
E + B̂I

ED̂
I
E = {D̂ − D̂I

V}B̂I
E + B̂I

E{D̂ − D̂I
V}. (8)

We shall refer to Eq. (8) as the Leonov equation after its orig-
inal proposer [21]. When constitutive representations are pro-
vided for D̂I

V and B̂I
E in terms of r̂, Eq. (8) may be integrated to

obtain the evolution of stress for a given deformation history.
This approach has been used by Tervoort et al. [32] in modelling
elastic–viscoplastic deformation of glassy polymers.
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