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Abstract

The influence of triple junction mobility on the rate of size change is investigated by square-lattice Monte Carlo Potts model simu-
lations. For normal, grain-boundary-controlled grain growth the classical von Neumann—Mullins relation (4 « n — n,) is fulfilled for
individual polyhedral grains as well as for polycrystalline grain microstructures. For triple-junction-controlled grain growth the number
of neighboring grains is related self-similarly to the radius change rate (R o< (n — n.)/n), which is also shown to be fulfilled for individual

grains and polycrystalline microstructures.
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1. Introduction

As long ago as 1952 von Neumann presented a funda-
mental relation for 2-D soap froth relating the rate of size
change to the number of sides [1]. A couple of years later
Mullins applied this idea to normal grain growth in two
dimensions, yielding a rule of motion [2] that is known
today as the von Neumann—Mullins law. This law states:

. 7 n
A= —mg)y, (27t — gn) = Mgl 3 (n—0). (1)

Here mygy, is the grain boundary mobility, y, is the grain
boundary surface tension, A4 is the area of a grain and # is
the number of sides or neighbors of that grain and the
number of triple points, respectively, for any value of
n > 0. In contrast, n = 0 corresponds to the case of zero tri-
ple points describing a grain embedded in a larger matrix
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grain with one grain boundary. Specifically, the rate of area
change 4 is independent of the shape of the grain bound-
aries. As a result, all grains of an ensemble with n > 6 sides
will grow and grains with n < 6 sides will shrink and finally
disappear. Only those grains with six sides are stable, mak-
ing n = 6 the critical number of neighboring grains n.. In
particular, the von Neumann—Mullins law is a self-similar
time-independent function that holds whenever the average
grain area increases linearly with time.

In this model grain boundaries are considered as plane
curves and their migration is always directed toward the
centre of curvature with a speed that is proportional to
the curvature itself. It is assumed, in particular, that all
grain boundaries of the polycrystalline microstructure are
characterized by a unique value for the surface tension as
well as by the same mobility. This is in agreement with
the uniform boundary model [3] and neglects any depen-
dence of the boundary properties m14;, and },;, on the misori-
entation or crystallographic orientations of the boundaries,
where, in particular, the grain boundary mobility m,; does
not depend on the velocity of grain boundary migration.
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Finally, it is also assumed that only the grain boundaries
contribute to their migration, and triple junctions are only
geometrical properties. It follows from the surface tension
equilibrium that the stable number of grains meeting in a
vertex is always three and the associated triple junction
angle is 120°.

Over the years, the von Neumann—Mullins law has been
verified by experiments [4.5], theoretical considerations
[6,7], and computer simulations [8,9]. However, especially
in the last decade the influence of the triple junction drag
on grain growth kinetics has become increasingly impor-
tant. Triple junction drag is the principal explanation for
the thermal stability of nanocrystalline materials (see over-
view in Ref. [10]). While there is intense activity in this field
of research, and there are also many publications available
regarding the production as well as the mechanical proper-
ties of nanocrystalline materials, statements regarding
grain microstructural changes during coarsening are gener-
ally limited to information on the temporal evolution of the
average grain size and on initial grain size distributions.

However, as long ago as 1998 Gottstein and Shvindler-
man [11] considered the influence of triple junction drag-
ging on the von Neumann-Mullins relation. Their work
is based on the idea that in nanocrystalline materials the
influence of the triple points of a 2-D grain network is
non-negligible. In particular, the triple point mobility,
which is considered to be different from that of the adjoin-
ing boundaries, influences the migration of the triple point
and hence also the motion of the adjacent boundaries. To
that aim, Gottstein and Shvindlerman [12] derived a rela-
tionship between triple junction mobility and the dihedral
angles forming; they had to distinguish between grains with
n < 6 neighbors and grains with n > 6 neighbors, and they
derived two separate expressions for the rate of area change
for grains with few sides (n < 6):

Mgp ygb

A= -5
2cos0—1
T+ 2l

27 — n(n — 20)). (2a)
And with many (n > 6) sides:
mghygb

1 — 1-2cosf
In(sin 0)

A= [n(m —20) — 27]. (2b)

Both equations are functions of 0, which is half the dihe-
dral angle of the grain at the triple junction and depends
strongly on the ratio of the mobilities of grain boundaries
myg;, and triple junctions m,; (cf. also Refs. [13,14]). It follows
that grains with few (n < 6) sides will still shrink, but more
slowly than in case of normal grain growth, and grains with
many (n > 6) sides will grow, but also more slowly than for
normal grain growth. In particular, for normal grain
growth with an equilibrium angle at the triple points of
120°, i.e. 0 = n/3, Eqgs. (2a) and (2b) include as a limiting
case the classical von Neumann—Mullins-law, Eq. (1).

Moreover, while Egs. (2a) and (2b) have been found to
be in good agreement with network-model simulations [15],
they also suffer from one particular drawback: they consist
of two separate equations, instead of a holistic single

solution for all numbers of sides. Hence, in the present
paper we investigate the influence of triple junction mobil-
ity on the rate of size change by square-lattice Monte Carlo
Potts model simulations. We show, in particular, that for
triple-junction-controlled grain growth the number of
neighboring grains 7 is related self-similarly to the radius
change rate by the von Neumann—Mullins-type relation
R o (n — n.)/n as has been derived recently by Streitenber-
ger and Zollner [16], and find it to be fulfilled for individual
grains as well as for polycrystalline grain microstructures.

2. A holistic growth laws for triple-junction-controlled grain
growth

In a recent paper, Streitenberger and Zollner [16]
derived an expression for the rate of size change for grain
growth under triple junction dragging based on the general
form of the evolution equation of a single grain of linear
grain size R:

RR = mg,,ygbfx<nﬁ — ng+l), (3)

where the dimension is D = 2 for 2-D grain growth, n. is the
critical number of neighbors for which R(R =R.) =0 is
associated with the critical grain radius R., and « is a con-
stant. Eq. (3) represents specifically for normal grain growth
the von Neumann—Mullins law, Eq. (1), as the area change
rate of a grain with the parameters n, =6 and « = 1/6.
However, for triple-junction-controlled grain growth « can-
not be predicted theoretically, but from simulations we find
that it takes—as we will see below—a much smaller value.

Then again, while it is assumed for normal grain growth
(on the micrometer size scale) that only the grain bound-
aries and their properties control the migration kinetics,
limited triple junction mobility is considered to be the main
reason for the nanocrystalline growth kinetics. In particu-
lar, Gottstein and Shvindlerman [17] derived a principle
expression giving the velocity of a boundary in terms of
the intrinsic mobilities mg;, my;, my, of grain boundaries,
triple junctions and quadruple junctions:

- mgbygbK
= 1 +@+ Mg, )

am; ' a’mg,

(4a)

where K is the curvature of the boundary and a is the
boundary junction spacing. Considering grain growth in
two dimensions and introducing the intrinsic size parame-
ter A =mg/my;, Eq. (4a) takes the simplified form v=
MoK with an effective mobility:
.

1+ A/a

of a grain boundary reduced by the drag effect of the adjoin-
ing triple junctions. It follows that under the assumption that
the average boundary junction spacing and the average cur-
vature scale with the average grain size as a ~ (R) and
K~ (R)™', respectively, two different types of growth
kinetics in polycrystals can be predicted [17]. Grain growth

(4b)
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