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An exact non-linear formulation of the equilibrium of elastic prismatic rods subjected to compression and
planar bending is presented, electing as primary displacement variable the cross-section rotations and
taking into account the axis extensibility. Such a formulation proves to be sufficiently general to encom-
pass any boundary condition. The evaluation of critical loads for the five classical Euler buckling cases
is pursued, allowing for the assessment of the axis extensibility effect. From the quantitative viewpoint,
it is seen that such an influence is negligible for very slender bars, but it dramatically increases as the
slenderness ratio decreases. From the qualitative viewpoint, its effect is that there are not infinite critical
loads, as foreseen by the classical inextensible theory. The method of multiple (spatial) scales is used
to survey the post-buckling regime for the five classical Euler buckling cases, with remarkable success,
since very small deviations were observed with respect to results obtained via numerical integration of
the exact equation of equilibrium, even when loads much higher than the critical ones were considered.
Although known beforehand that such classical Euler buckling cases are imperfection insensitive, the
effect of load offsets were also looked at, thus showing that the formulation is sufficiently general to
accommodate this sort of analysis.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This paper should not begin without recalling the magisterial
work by Euler [1] published 268 years ago, in which variational
methods were applied to determine the “elastica” and buckling loads
of inextensible rods, based on kinematical hypothesis suggested by
Bernoulli [2]. Since then, the subject has been extensively studied, as
seen in [3–8], due to its utmost relevance to the design of reticulated
structures.

Also, this paper recasts and expands works written by the author
more than 20 years ago [9,10]. The general non-linear equation of
equilibrium of 2D Bernoulli–Euler elastic beam-columns subjected to
end bending moment and compression force with possible loading
offset (imperfection) is written in terms of cross-section rotations,
taking into account axial stretching.

The general linearised equation is examined in order to evaluate
critical loads for each one of the five classic Euler buckling cases,
considering different constraint conditions [3,4]. Such critical loads
are compared to the classical values for inextensible bars and con-
clusions are drawn with regard to the number of critical loads.
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Next, the non-linear equation of equilibrium is recast and the
post-buckling regime is surveyed using themethod ofmultiple scales
to produce a single explicit solution that is valid for any one of the
five classic cases. Unlike the basic perturbation techniques used in
non-linear statics, such as the straightforward expansion method
(Poincaré's method) [11], which are barely capable of estimating the
initial post-buckling response, the method of multiple scales [12]
is able to supply a very accurate estimate of the displacements for
loads much higher than the critical one, as seen when a comparison
is made with results of numerical integration. The method of multi-
ple scales is known for rendering uniformly convergent expansions,
which is a most valuable feature in non-linear dynamics, where the
independent variable (time) ranges from zero to infinity. In non-
linear statics, the variation of the independent variable (co-ordinate
along the bar axis) is comfortably limited to the bar length. It was
already surprising to the author 20 years ago and so it is even more
now, that very little attention has been given to the remarkable
power of the multiple scales expansions to supply at the same time
simple and accurate results in non-linear statics. In fact, only a few
references on the use of the method of multiple scales in non-linear
statics can be reported in the literature, as in [13,14].

Although the classical elastic Euler buckling cases are known
to be imperfection insensitive [6,7], both the perfect and imper-
fect responses are inter-compared for the clamped-free and the
hinged–hinged rods, as illustrative examples of the formulation
generality.
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Fig. 1. (a) Prismatic elastic rod under bending and compression; (b) Bernoulli–Euler beam kinematics.

2. Non-linear equilibrium equation

The prismatic beam-column of Fig. 1(a), with length �, cross-
section area A and moment of inertia I, made of an elastic material
of Young's modulus E, is considered. It is subjected to an initial axial
compression P. It may be the case that end-bending moments come
into play, as result of constraint conditions and/or load offsets. In
the general case, to restore equilibrium with respect to moments, it
may happen that end transversal forces R also appear.

Fig. 1(b) introduces the notation and refers to the Bernoulli–Euler
kinematics, which is characterised by the following well-known re-
lationships:

u = ū − z sin�,

w = w̄ − z(1 − cos �),

sin � = w̄′

�̄
⇒ w̄′ = �̄ sin �,

cos � = 1 + ū′

�̄
⇒ 1 + ū′ = �̄ cos �, (1)

where u and w stand for the axial and transversal displacements
of a point P that in the undeformed configuration is given by (x,z);
ū and w̄ are the corresponding displacements for the cross-section
centroid at abscissa x; � is the cross-section rotation at abscissa x;
primes indicate derivation with respect to x. The axis stretching is
given by

�̄ =
√
(1 + ū′)2 + (w̄′)2. (2)

It can be shown [15]—for an elastic material obeying Hooke's
law,1 i.e., � = E(� − 1), where � is the stretching at the point (x,z)—
that the normal force and the bending moment can be exactly
evaluated as

N = EA(�̄ − 1), (3)

M = −EI�′. (4)

Considering the applied end loads, the normal force and the bending
moment can also be written as

N = −P cos � + R sin �, (5)

M = M� − R[(� + ū�) − (x + ū)] − P(w̄� − w̄)

= M0 + R(x + ū) + Pw̄, (6)

1 Filipisch and Rosales [16] consider other statements for Hooke's law, depend-
ing on which stress (engineering, second Piola–Kirchhoff, Cauchy) and strain (linear,
Green, Almansi, Hencky) definitions are used.

where, without loss of generality, it was assumed in the last of (6)
that ū0 = 0 and w̄0 = 0. Hence, combining (3) and (5), as well as (4)
and (6)

EA(�̄ − 1) = −P cos � + R sin �, (7)

−EI�′ = M� − R[(� + ū�) − (x + ū)] − P(w̄� − w̄)

= M0 + R(x + ū) + Pw̄. (8)

After derivation with respect to x and taking (1) into account, (8) is
rewritten as

−EI�′′ = R(1 + ū′) + Pw̄′ = �̄(R cos � + P sin �). (9)

From (7), the axis stretching is

�̄ = 1 −
(

P
EA

cos � − R
EA

sin �
)
. (10)

Finally, (10) in (9) leads to a second-order differential equation for
the rotations:

EI�′′ +
[
1 −

(
P
EA

cos � − R
EA

sin �
)]

(R cos� + P sin�) = 0. (11)

The corresponding non-dimensional equation is

d2�

d�2 + p
�
[1 − p(cos � − � sin �)](� cos � + sin �) = 0, (12)

p = P
EA

, � = R
P
, � = x

�
, � = I

A�
2 . (13)

The exact non-linear Eq. (12) can be approximated up to the order
�3, where 0 < �>1, by

d2�

d�2 + �1� + ��2�2 + �3�3 = ��0, (14)

��0 = −�p(1 − p)
�

, ��2 = −�p(1 − 4p)
2�

,

�1 = p(1 − p + �2p)
�

, �3 = −p(1 − 4p + 4�2p)
6�

. (15)

Notice that the non-homogeneous term and the coefficient of the
quadratic term are scaled in (14) as of the order �, since � is null or
at least small compared to the unity in the five classic Euler buckling
cases, which are the main concern of this study.
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