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ARTICLE INFO ABSTRACT

In this paper, we study phase transitions in a slender circular cylinder composed of a compressible
hyperelastic material with a non-convex strain-energy function in a loading process. We aim to construct
the asymptotic solutions based on an axisymmetrical three-dimensional setting and use the results to de-
scribe the key features observed in the experiments by others. By using a methodology involving coupled
series-asymptotic expansions, we derive the normal form equation of the original complicated system of
non-linear PDEs. Based on a phase-plane analysis, we manage to deduce the global bifurcation properties
and to solve the boundary-value problem analytically. The explicit solutions (including post-bifurcation so-
lutions) in terms of integrals are obtained. The engineering stress-strain curve plotted from the asymptotic
solutions can capture the key features of the curve measured in some experiments. Our results can also
describe the geometrical size effect as observed in experiments. It appears that the asymptotic solutions
obtained shed certain light on the instability phenomena associated with phase transitions in a cylinder.
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1. Introduction

Systematic experiments have been carried out on the uniaxial
extensions of superelastic NiTi (a kind of shape memory alloy and
also one kind of phase-transforming material) wires, strips and tubes
[12,20,22,23,25,28]. It was found that the external force will in-
duce phase transitions of the NiTi SMA wires, strips and tubes be-
tween austenite and martensite phases. During this phase transition
process the new phase first nucleates at some special site of the
specimen and then propagates gradually. The measured engineering
stress-strain curves have some important key features: the nucle-
ation stress occurs at a local maximum which is significantly larger
than the Maxwell stress; following the nucleation stress there is a
sharp stress drop; and afterwards there is a stress plateau. An impor-
tant geometrical size effect was reported by Chang et al. [5] that the
axial extent of the transformation front is of the order of the radius.

Theoretically, solid-solid phase transitions have been studied for
a long time in the context of both continuum and lattice theories.
As pointed out by Fu and Freidin [18], there are three major is-
sues that need to be resolved: (i) characterization of materials that
can support multiphase deformations; (ii) description of multiphase
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deformations under various loading conditions when the strain-
energy function and the geometry of the elastic body are specified;
and (iii) determination of the stability of multiphase deformations
that can exist mathematically.

Many previous studies have been devoted to the resolutions of
these issues. The seminal work of Ericksen [11], which considered
a continuum one-dimensional stress problem, made clear that for a
non-convex strain-energy function the solution with two phases can
arise and there are multiple solutions. Based on the lattice model for
a two-phase martensitic material, it is possible to deduce that in the
related continuum model the strain-energy function has a double
well; see [3]. In general, it is now understood that a necessary condi-
tion for phase transitions take place is that the material loses strong
ellipticity at some deformation gradient (see also [1,2,14,19,21]).
Still, to justify this point of view, it is desirable (probably necessary)
to compare the analytical or numerical solutions based on this type
of energy function with experimental results. For some specified
strain-energy functions and geometry of the elastic bodies, detailed
descriptions and stability analyses of multiphase deformations un-
der various loading conditions have also been conducted by many
previous works (see [10,13,15,16,18,26,29]).

In the papers of Dai and Cai [9] and Cai and Dai [4], phase tran-
sitions in a slender cylinder composed of a special incompressible
elastic material were considered in a three-dimensional setting. A
novel coupled series-asymptotic approach was utilized to reduce the
field equations. A proper asymptotic model equation was derived,
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Fig. 1. The -V curve.

which took into account the influences of the radial deformation
and traction-free boundary conditions. Analytical solutions for two
boundary-value problems were obtained, and they could capture the
key features observed in experiments.

In this paper, we study phase transitions in a slender cylinder
composed of a general compressible elastic material due to extension.
The emphasis is on describing the geometrical size effect through
analytical (asymptotic) solutions. For that purpose, we consider the
problem in a three-dimensional setting, different from the one-
dimensional stress problem studied by Ericksen [11]. However, the
strain-energy function is assumed to have the same property as that
in [11], i.e., for a one-dimensional stress problem the stress-strain
curve has a peak-valley combination (cf. Fig. 1). We aim at con-
structing the asymptotic solutions and using them to explain the
experimental results.

Mathematically, to deduce the analytical solutions for the present
problem, one needs to deal with coupled non-linear partial differ-
ential equations (PDEs) together with complicated boundary condi-
tions. Further, the existence of multiple solutions (corresponding to
instability phenomena (e.g., stress drop) observed in experiments)
makes the problem even harder to solve. Here, by using the coupled
series-asymptotic method (see also [7,8]), we derive the normal form
equation (NFE) of the non-linear system of PDEs. Based on a phase-
plane analysis, we construct the asymptotic solutions and extract
from them important information on the deformed configurations,
the nucleation stress, the instability phenomena and the transforma-
tion front. Comparisons with experimental results are made, which
show that the asymptotic solutions can capture the key features
of the experimental engineering stress-strain curves, the instability
phenomena and the geometrical size effect as observed in exper-
iments. The qualitative agreements give supporting evidence that
the concave-convex nature of the engineering stress-strain curve
indeed plays an important role in describing the solid-solid phase
transitions in the present problem.

We point out that the model we proposed here is entirely macro-
scopic, it does not account for the influence of some important pa-
rameters such as grain size, alloy composition, etc. In our model, the
effect of two phases coexist is smeared out so that the exact na-
ture of the juxtaposition is lost. However, the analytical solutions we
obtained here can also reflect the information of the phase states.
In fact, the phase states can be represented by the axial strain val-
ues (cf. Fig. 9b): the low-strain region corresponds to the austenite
phase, the high-strain region corresponds to martensite phase and
the localization region where the axial strain varies at a high rate
corresponds to the phase interface (where austenite and marten-
site coexist). Comparing with the discontinuous two-phase solutions

obtained from some purely one-dimensional model (e.g., [11]), the
continuous solutions we obtained here can provide some informa-
tion on the phase transformation fronts. Determination of the stabil-
ities for the solutions we obtained is still an open problem. Here, we
just derive all the possible equilibrium solutions under certain re-
strictions. During the intervals where multiple solutions coexist, we
shall use the minimum energy criterion to determine the preferred
solution.

This paper is arranged as follows. In Section 2, we formu-
late the field equations by treating the slender cylinder as a
three-dimensional object. In Section 3, we carry out a non-
dimensionalization process to extract the important small variable
and two small parameters which characterize this problem. Then
we derive the NFE of the original governing non-linear PDEs in Sec-
tion 4, through novel series and asymptotic expansions. In Section
5, we show that the Euler-Lagrange equation can also lead to the
same NFE, which justifies our method of deriving this equation. In
Section 6, we construct the asymptotic solutions for both a force-
controlled and a displacement-controlled problem. The minimum
energy criterion is used to determine the preferred solution. Based
on the solutions obtained, we give some analysis on the geometrical
size effect. Finally, some conclusions are drawn.

2. Three-dimensional field equations

We consider the axisymmetric deformations of a slender elastic
cylinder subject to a static axial force at two ends. The lateral sur-
face is traction-free and the end conditions will be considered later.
The radius of the cylinder is a and the total length is I. We take the
cylindrical polar coordinate system and denote (R, ®,Z) and (r,0,z)
the coordinates of a material point of the cylinder in the reference
and current configurations, respectively. The finite radial and axial
displacements can be written as

URR,Z)=r(R.Z)—R, W(RZ)=2R Z)-Z. (2.1)

We introduce the orthonormal bases associated with the cylindri-
cal coordinates and denote these by Eg, Eg, Ez and ey, eg, €z in the
reference and current configurations, respectively. Then the defor-
mation gradient tensor F is given in these orthonormal bases by

u
F=(1+UR)er®ER+UZer®Ez+<] +E>e9®E@
+WREZ®ER+(1 +Wz)ez®Ez. (22)

For an isotropic hyperelastic material, the strain-energy function
@ is a function of the three invariants Iy, I, and I3 of the left
Cauchy-Green strain tensor B = FF!; that is, ¢ = d(1,,13). We
suppose that @ is non-convex in a pure one-dimensional stress
problem such that phase transition can take place. The nominal
stress tensor X is given by
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If the strains are small, it is possible to expand the nominal stress
components in term of the strains up to any order. The formula con-
taining terms up to the third-order material non-linearity is (cf. [17])
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