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The static analysis of the flexible non-uniform cantilever beams under a tip-concentrated and intermedi-
ate follower forces is considered. The angles of inclination of the concentrated forces with respect to the
deformed axis of the beam remain unchanged during deformation. The governing non-linear boundary-
value problem is reduced to an initial-value problem by change of variables. The resulting problem can
be solved without iterations. It is shown that there are no critical loads in the Euler sense (divergence)
for any flexural–stiffness distribution and angles of inclination of the follower forces. In particular, if the
follower forces are tangential, the rectilinear shape of the non-uniform cantilever beam is the only pos-
sible equilibrium configuration. In this paper some equilibrium configurations of the uniform cantilever
under normal or tangential follower forces are presented using direct method.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

There are many research studies dealing with large-deflection
problem of a cantilever beam subjected to a follower forces. Argyris
and Symeonidis in their fundamental paper [1] performed static ge-
ometrically non-linear analysis of cantilevers subjected to follower
loads by the finite-element method and found the critical flutter
loads. The finite difference method has been applied in solutions
for the large bending of uniform cantilever subjected to concen-
trated or distributed follower loads by Saje and Srpcic [2]. When
follower loads are tip-concentrated (normal or tangential to the
deformed axis of the cantilever) this method leads to a system of
transcendental equations which can be solved without iteration [2].
Rao et al. [3,4] studied large deflections of uniform and non-uniform
cantilever beams under tip rotational loads using the shooting
method. In particular, the case when the force at the free end main-
tains a constant angle with the beam axis was considered. The large
deflections and stability behavior of cantilever beams subjected to
transverse follower force (using the finite-element method) was
studied by Vitaliani et al. [5]. Detinko [6] presented the closed an-
alytic solution of the large-deflection problem for cantilever beams
and circular arches of uniform cross section, subjected to terminal
follower forces. The elastica solutions for an uniform cantilever
beam under two proportional follower forces normal to the de-
formed beam axis was obtained with the help of the principle of
elastic similarity by Hartono [7].
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In Ref. [8], the direct numerical method for the large-deflection
problem of a non-uniform cantilever under a tip-concentrated fol-
lower force was proposed. It is shown that there are no static critical
loads (divergence) for any flexural–stiffness distribution and angles
of inclination of the follower force. It is of interest to assess the va-
lidity of this statement for the cantilever under a few follower forces.

In the present paper, the large-deflection problem of a non-
uniform cantilever beam under two concentrated follower forces is
considered. The angles of inclination of the forces with respect to the
deformed axis of the beam are assumed to be constant. The math-
ematical formulation of this problem yields a non-linear two-point
boundary-value problem which is reduced to an initial-value prob-
lem by change of variables. The advantage of this approach is that
the problem can be solved without iterations. Since the solution of
the initial-value problem is unique, divergence instability does not
occur. Therefore, the elastic cantilever beam in question can lose sta-
bility only by flutter. In particular, if the follower forces are tangen-
tial, the rectilinear shape of the non-uniform cantilever beam is the
only possible equilibrium configuration. Some equilibrium configu-
rations of a uniform cantilever under normal or tangential follower
forces are presented.

2. Formulation of the problem

Let us consider a rectilinear non-uniform cantilever beam having
length L and flexural rigidity EI(s) subjected to two concentrated
follower forces P1, P2. The force P1 is applied to the free end of can-
tilever, while P2 is applied at a distance �L from the free end (Fig. 1).
The angles of inclination of the forces with respect to the deformed
axis of the beam �1, �2 are kept constant. The arc length measured
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Fig. 1. Cantilever beam under two follower forces.

from the free end and the slope of the centroidal axis of the beam
are denoted by s and �(s), respectively. Using the Euler–Bernoulli
law of bending states, the non-linear differential equation governing
the behavior of the beam can be obtained

(EI�′)′ + P1 sin(� + �1 − �(0)) = 0 for s ∈ [0, �L)

(EI�′)′ + P2 sin(� + �2 − �(�L))

+ P1 sin(� + �1 − �(0)) = 0 for s ∈ [�L, L] (1)

with the boundary conditions

�′(0) = 0, �(L) = 0. (2)

The angles �1 = �2 = �/2 correspond to the follower forces acting in
the normal direction to the deformed axis of the beam [1–8] and the
angles �1 =�2 =0 correspond to the tangential follower forces [2,8].

Once the slope �(s) has been found, the Cartesian coordinates of
the beam axis are readily determined from the relations

x(s) =
∫ L

s
cos �ds̃, y(s) =

∫ L

s
sin �ds̃. (3)

3. Method of solution

Non-linear two-point boundary-value problems similar to that
formulated above are usually solved by iterative methods. According
to the shooting method, the non-linear two-point boundary-value
problem (1), (2) can be reduced to a set of initial-value problems and
the unknown initial value is then determined iteratively [3,4]. It is
well known that the convergence of the iterative procedure depends
upon the proximity of the initial guess to the particular solution
sought. Moreover, similar boundary-value problems for conservative
problems (the flexible cantilever beam subjected to inclined dead
forces) admit multiple equilibrium solutions [9].

It can be shown, however, that the problem formulated above
can be solved by direct method without iterations.

Let us introduce a new variable [8]:

z(s) = �(s) + �1 − �(0). (4)

As a result, the boundary-value problem (1), (2) is reduced to the
initial-value problem

(EIz′)′ + P1 sin(z) = 0 for s ∈ [0,�L),

(EIz′)′ + P2 sin(z + �2 − z(�L))

+ P1 sin(z) = 0 for s ∈ [�L, L], (5)

z(0) = �1, z′(0) = 0 (6)

with the supplementary condition

z(L) = �1 − �(0). (7)

Introducing the notation

z1 = z, z2 = EI(s)z′, (8)

the problem (5), (6) can be reduced to the normal system of
non-linear differential equations

z′
1 = z2/EI(s),

z′
2 = −P1 sin ( z1) for s ∈ [0, �L),

z′
2 = −P2 sin(z1 + �2 − z1(�L))

− P1 sin(z1) for s ∈ [�L, L], (9)

z1(0) = �1, z2(0) = 0. (10)

System (9), (10) can be integrated over a given interval s ∈ [0, L] by
a standard numerical method. From Eq. (7) the value of the tip slope
of the beam

�(0) = �1 − z1(L) (11)

and values of �(s) are calculated by the formula

�(s) = z1(s) − z1(L), s ∈ [0, L], (12)

which follows from Eq. (4).
Thus, in contrast to the shooting method the problem considered

is solved without iterations.

4. Analysis and results

The solution of initial-value problem (5), (6) is unique for a con-
tinuous function EI(s) and any fixed values of P1, P2, �1, �2, �. If
the follower forces are tangential (�1 = �2 = 0), the problem has a
unique solution z(s)=�(s) ≡ 0, which means that the straight config-
uration is the only equilibrium configuration of the beam. Therefore,
the considered cantilever beams have no critical loads in the Euler
sense (divergence) for any flexural–stiffness distributions along the
beam. It follows that the non-uniform cantilever beam in question
can exhibit only dynamic instability (flutter) [1,5,10].

These conclusions generalize the same results for non-uniform
cantilever beams under a tip-concentrated follower force [8].
Thus, in contrast to the conservative systems [9], the studied non-
conservative systems always have a unique solution (equilibrium
configuration) that can be found by direct method.

Using the method of solution outlined above, the behavior of
a uniform cantilever subjected to a tip and intermediate follower

Table 1
Tip coordinates and slope of a cantilever loaded by normal follower forces (P1 =
P2 = P, �1 = �2 = �/2, � = 0.5, P̃ = PL2/EI).

P̃ �(0) x(0)/L y(0)/L

1 35.43 0.8935 0.4124
3 98.37 0.3240 0.8148
5 144.84 −0.1177 0.7208

10 204.58 −0.2922 0.3194
12 216.09 −0.2506 0.2477
15 227.60 −0.1810 0.1896
20 240.11 −0.0863 0.1506
25 249.45 −0.0223 0.1466
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