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Abstract

The Hashin–Shtrikman bounds of aggregates of cubic crystals are explicitly represented in terms of tensorial texture coefficients. The
formula is valid for arbitrary crystallographic textures and isotropic two-point statistics. The isotropy of the two-point statistics implies
that the grain shape is isotropic on average. The new explicit representation has the advantage that the set of energetically admissible
crystallographic textures and corresponding effective linear elastic properties can be directly determined and analyzed based on minimum
principles of the elastic strain energy density. It is shown that all energetically admissible textures with maximum anisotropy have an
effective elastic behavior with cubic sample symmetry. Furthermore, it is proven that there exist texture states without maximum anisot-
ropy which have the extreme elastic properties peculiar to states with maximum anisotropy. This is an important result for the design of
elastic material properties.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The generally non-linear and anisotropic constitutive
behavior of polycrystalline metals is dominated by both
their microstructure on the grain scale and the properties
of the grains. A prominent example is the anisotropic plas-
tic flow behavior of textured metals, which is of utmost
importance for the optimization of metal forming opera-
tions and the properties of structural parts. Random heter-
ogeneous materials, e.g., polycrystals, can in general be
statistically described by n-point probability functions
[36]. Many theoretical and numerical studies have shown
that one- and two-point probability functions allow for
rather accurate predictions of the effective material
behavior. The one-point probability function of crystal

orientations [11,13] gives a volume fraction description of
lattice orientation. In engineering and materials science,
this is commonly called the crystalline orientation distribu-
tion function (CODF). If the CODF is non-uniform, then
the material is said to have a crystallographic texture.
Higher-order probability functions describe morphological
aspects of the grain structure, e.g., the average grain shape
(morphologic texture). The probability functions can be
determined experimentally on two- or three-dimensional
spatial grids, e.g., by electron backscatter diffraction
techniques (see, e.g., [34,16]).

The CODF has been described based on different math-
ematical formulae [24]. From a continuum mechanical
point of view, tensorial representations of the CODF are
of advantage since they fit best into the continuum mechan-
ical framework. For an overview of tensorial representa-
tions of orientation distributions see [1,21,41,42]. For
applications of tensorial representations in the context of
homogenization problems see, e.g., [26–28,10].
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In continuum mechanics, n-point probability functions
are used to homogenize the effective properties of polycrys-
tals [24,36]. Furthermore, based on homogenization
schemes, the effective properties of polycrystals can be opti-
mized by selecting processing paths which induce crystallo-
graphic and morphological textures with preferable
effective properties [5,19]. In the last decade, important
contributions in the context of materials and microstruc-
ture design have been made for linear and non-linear
constitutive behavior (see, e.g., [2,4,3]).

In this paper we consider the microstructure property
linkage in the context of linear elasticity. Based on a new
explicit representation of Hashin–Shtrikman bounds for
cubic crystal aggregates in terms of a fourth-order tensorial
texture coefficient, the effective elastic properties are explic-
itly represented. The main assumptions for the derivation
of the new representation are that (i) the displacement field
on the grain scale is continuous, and (ii) the local elastic
behavior is linear, uniform and shows a cubic symmetry.
Additionally, it is assumed that (iii) the two-point correla-
tion function of grain orientations is isotropic, which
implies that the grain geometry is spherical on average.
To the best of our knowledge, an explicit representation
of the Hashin–Shtrikman bounds in terms of tensorial tex-
ture coefficients has not been published yet.

Based on the new representation, the effective elastic
properties are discussed in detail. Energetically admissible
textures are identified in terms of fourth-order texture coef-
ficients, and corresponding extreme linear elastic properties
are derived. With the new approach, it can be shown, for
example, that the extreme elastic properties observed at
the single crystalline level are transferred completely to
effective properties for all textures with a fourth-order
texture coefficient on the boundary of the energetically
admissible texture range.

The outline of the paper is as follows: in Section 2, the
Hashin–Shtrikman bounds are derived in terms of
fourth-order texture coefficients. Section 3 gives the ener-
getically admissible fourth-order texture coefficients for dif-
ferent sample symmetries. The implications of first- and
second-order bounds on the effective elastic properties are
discussed in Section 4, with focus on the transfer of extreme
properties from the micro- to the macroscale.

Notation. A direct tensor notation is preferred through-
out the text. If tensor components are used, then Latin
indices are used and the Einstein’s summation convention
is applied. Vectors and second-order tensors are denoted
by lowercase and uppercase bold letters, e.g. a 2 V and
A 2 Lin, respectively. The compositions of two second-
order or two fourth-order tensors are formulated by AB
and AB. A linear mapping of second-order tensors by a
fourth-order tensor is written as A ¼ C½B�. The scalar
product and the dyadic product are denoted, for example,
by A � B and A� B, respectively. We define ðA�BÞ½C � ¼
ACB 8A;B;C 2 Lin and ða� bÞ � ðCsa� btÞ ¼ ða� aÞ�
ðC½b� b�Þ8a; b 2 V . The H denotes the Rayleigh product,
which, for tensors of arbitrary rank with respect to an

orthonormal basis T ¼ T ij...l ei � ej � . . .� el, is defined
by Q H T ¼ T ij...lðQeiÞ � ðQejÞ � . . .� ðQelÞ. The major
transposition of A is denoted by ATH , which satisfies
A � ðA½B�Þ ¼ B � ðATH ½A�Þ 8A;B 2 Lin. The identity on
symmetric second-order tensors is denoted by IS. Com-
pletely symmetric and traceless tensors are designated by
a prime, e.g., A0. The brackets h�i, e.g., hei, indicate ensem-
ble averaging, which for ergodic media can be identified
with volume averages in the infinite volume limit. A super-
imposed bar, e.g., �e, indicates that the quantity refers to the
macroscale. The set of proper orthogonal tensors is
denoted by SOð3Þ. A short introduction of the tensor
calculus used in the present work can be found in [37], as
well as in [35].

2. Homogenization of linear elastic properties

2.1. Tensorial representation of the crystallite orientation

distribution function

The orientation of a crystal with cubic symmetry is
described by a proper orthogonal tensor Q ¼ gi � ei, where
the vectors fgig and feig denote the orthonormal lattice
vectors and an arbitrary fixed orthonormal reference basis,
respectively. The crystallite orientation distribution func-
tion (CODF) f ðQÞ specifies the volume fraction dv=v of
crystals with the orientation Q [11], i.e. dv=vðQÞ ¼
f ðQÞdQ. Here, dQ is the volume element in SOð3Þ which
ensures an invariant integration over SOð3Þ [20]. The prob-
ability density function f ðQÞ is non-negative and normal-
ized. It reflects both the symmetry of the crystallites
forming the aggregate and the sample symmetry, which
results from the processing history [12]. The crystal symme-
try implies f ðQÞ ¼ f ðQHCÞ8HC 2 SC # SOð3Þ, where SC

denotes the symmetry group of the crystallite. The sample
symmetry requires f ðQÞ ¼ f ðHSQÞ8HS 2 SS # SOð3Þ.
Here, SS denotes the symmetry group of the sample.

For the analysis in this paper we use a tensorial Fourier
expansion of the CODF. For its existence, it has to be
assumed that the CODF is square integrable. For the spe-
cial case of a cubic crystal symmetry, the expansion has the
following form [1,21,6,7]:

f ðQÞ ¼ 1þ
X1
i¼1

faiðQÞ; f ai
¼ V0haii � F

0
haiiðQÞ;

F0haiiðQÞ ¼ QHT0haii; ð1Þ

where faig ¼ f4; 6; 8; 9; 10; . . .g. The V0haii are called tenso-
rial Fourier coefficients, or texture coefficients. The bracket
h�i in subscript indicates the tensor rank, e.g., V0h4i is the
fourth-order texture coefficient. The tensors T0haii are called
reference tensors. They are normalized without loss of gen-
erality as follows: kT0haiik ¼ 2ai þ 1. The V0haii and T0haii are
completely symmetric and traceless tensors. For example,
the following relations hold for V0 ¼ V0h4i:

V 0ijkl ¼ V 0jikl ¼ V 0klij ¼ V 0kjil ¼ . . . ; V 0iikl ¼ 0: ð2Þ
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