
International Journal of Non-Linear Mechanics 43 (2008) 908 -- 914

Contents lists available at ScienceDirect

International Journal of Non-LinearMechanics

journal homepage: www.e lsev ier .com/ locate /n lm

Numerical approximation for a non-linearmembrane problem

Nabil Kerdida, Hervé Le Dretb,c,∗, Abdelkader Saïdid
aCollege of Computer and Information Sciences, Imam University, Riyadh, Saudi Arabia
bLaboratoire Jacques-Louis Lions, UPMC Univ Paris 06, UMR 7598, F-75005 Paris, France
cLaboratoire Jacques-Louis Lions, CNRS, UMR 7598, F-75005 Paris, France
dInstitut de Recherche Mathématique Avancée, Université Louis Pasteur, 7 rue René Descartes, 67084 Strasbourg, France

A R T I C L E I N F O A B S T R A C T

Article history:
Received 22 January 2008
Received in revised form 10 June 2008
Accepted 11 June 2008

Keywords:
Non-linear elasticity
Membranes/thin films
Finite element approximation

We present a numerical study of large deformations of non-linearly elastic membranes. We consider the
non-linear membrane model obtained by Le Dret and Raoult using �-convergence, in the case of a Saint
Venant-Kirchhoff bulk material. We consider conforming P1 and Q1 finite element approximations of the
membrane problem and use a non-linear conjugate gradient algorithm to minimize the discrete energy.
We present numerical tests including membranes subjected to live pressure loads.
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1. Introduction

The purpose of this article is to devise numerical approximations
of large deformations of a non-linearly elastic membrane. The non-
linear membrane model used here was obtained in [1], with refine-
ments in [2]. The relevance of this model stems from the fact that it
was derived from three-dimensional non-linear elasticity by means
of a rigorous convergence method. Similar non-linear membrane
models had already been obtained previously by Pipkin, directly in
the context of standard two-dimensional membrane theory and us-
ing relaxation, see [3].

Our numerical study of the non-linear membrane model is made
possible due to the explicit formula for the non-linear membrane
energy given in [1] in the case of the Saint Venant-Kirchhoff bulk
material. For a general bulk material, an explicit computation of the
corresponding non-linear membrane energy entails the determina-
tion of the quasiconvex envelope of a function defined on the space
of 3 × 2 matrices, a hopeless task as a general rule.

The work of [1] was motivated by [4], the first article to deal with
a genuine dimension reduction in non-linear elasticity via a mathe-
matical convergence result in the case of non-linearly elastic strings.
It was followed in recent years by many, sometimes highly technical
developments, including derivations of inextensional bending mod-
els and Von Kármán type models, see [5–7], among others. We are
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not however aware of the energies found in [1,2] ever being used in a
numerical context, even though there are many numerical works on
membranes and thin films, see [8,9] for numerical studies of Pipkin's
model using a differential equation approach, including the case of
a pressurized membrane [10], see also more or less ad hoc models
designed for simplicity or efficiency, for instance in [11–13]. The
modeling and numerical simulation of non-linear membranes is also
attracting increasing interest for materials with more sophisticated
material response than just non-linear elasticity, see [14] for finite
strain, viscoelastic membranes.

One purpose of the present article is to advocate the use of a
rigorously derived membrane energy to perform computations that
are grounded on an indisputable three-dimensional model and are
still efficient. Naturally, we then have to work with what is given by
the asymptotic dimensional reduction procedure, and not with an
ad hoc energy. This involves a little bit of mathematics, which needs
to be carefully done, see Section 3 below.

This article is organized as follows: We first briefly present the
results of [1,2]. We consider a three-dimensional hyperelastic homo-
geneous cylinder of thickness 2� >0 made of a given Saint Venant-
Kirchhoff material. The body is subjected to a dead loading body
force density and a constant pressure differential on its upper and
lower surfaces, and a boundary condition of place on its lateral sur-
face. The three-dimensional non-linear elasticity equilibrium prob-
lem is formulated as a minimization problem for the total energy of
the body.

Using �-convergence arguments, Le Dret and Raoult showed that
deformations that almost minimize the three-dimensional total en-
ergy converge when the thickness � of the body goes to zero towards
deformations that minimize a non-linear membrane energy, see [1].
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The convergence takes place in a rescaled weakW1,p sense. The limit
problem is two-dimensional, with values in R3.

The limit two-dimensional non-linear membrane energy is com-
puted in two steps: First minimize the bulk stored energy func-
tion with respect to the third column vector of the deformation
gradient—this step produces a function W0 on the space of 3 × 2
matrices—then take the quasiconvex envelope of W0. In the special
case of a Saint Venant-Kirchhoff material, an explicit formula for this
quasiconvex envelope QW0 is available. This formula is expressed in
terms of the right singular values of the membrane deformation. In
[2], in addition to the case of curved membranes, the zero-thickness
limit of a constant live pressure loading term is also computed.

In Section 3, we present a conforming finite element approxima-
tion of the membrane problem. We consider P1 and Q1 discretiza-
tions of the three Cartesian components of the deformation. In the
P1 case, deformations are approximated by piecewise affine, glob-
ally continuous functions on a triangulation of the domain. In the Q1
case, which is appropriate for rectangular membranes, a rectangu-
lar mesh is used with globally continuous approximations that are
piecewise of partial degree less or equal to one on the rectangular
elements. We prove the weak-W1,4 convergence of the approximate
solutions toward a solution of the continuous minimization problem.

The choice of available numerical methods to solve our FE prob-
lem is rather limited since the problem under study is highly non-
linear and the membrane stored energy function is only of class C1.
Consequently, a method relying on second derivatives of the total
energy such as the Newton–Raphson method cannot be appropriate.
On the contrary, the non-linear conjugate gradient method with the
Polak and Ribière variant seems to be well adapted to our problem.
The convergence of the algorithm is guaranteed for a convex func-
tional, which is only the case here when the pressure differential is
zero. There is however a slight difficulty in computing the gradient
of the stored energy function. We adapted Ball's results concerning
the differentiability of frame-indifferent, isotropic functions on the
space of n × n square matrices, see [15].

In Section 4, we present various numerical tests. Both P1 and
Q1 elements are alternatively used. The first test is a circular mem-
brane subjected to an upward pressure differential and clamped on
its boundary. It should be noted that in our formulation, there is ab-
solutely no need to track the deformed normal vector in order to
take into account the live loading pressure differential. This is exem-
plified by the bubble-like deformation computed in this test which
bulges out of the supporting circle. Note again that we have not seen
our formulation of the pressure term used in a numerical context.

Next, we perform a few tests taken from [16]: a rectangular airbag
inflated by an inner pressure and a square membrane attached by
its four corners and subjected to a vertical point force applied at its
center. As opposed to [16], our model cannot capture wrinkles in de-
tail, because wrinkles are filtered out in the �-limit process, which
in turn leads to a well-posed limit minimization problem. Such is
the nature of weak convergence. However, wrinkled regions are cap-
tured. They are the membrane areas where the deformation gradient
lies a region of 3 × 2 space where relaxation occurs, i.e., the quasi-
convex envelope is such that QW0 <W0. This occurs in compression
when at least one of the singular values is less than 1 and the other
one is not too large, see [1] for details.

The last two tests are in the context of the modeling of fabrics.
The first test is a square piece of fabric attached at its center and
subjected to a vertical dead loading body force and the second is a
tablecloth with no displacement allowed on the table surface. The
obtained deformations develop folds and conical points where the
normal vector is ill-defined, but this is of no consequence for our
handling of the live pressure term.

Part of the results of this article concerning P1 elements and
without pressure differential were announced in [17].

2. The continuous problem

Let us briefly outline the results of [1,2], to which we refer the
reader for more details. Let � be an open, bounded subset of R2 with
Lipschitz boundary. For all � >0, we consider a hyperelastic homo-
geneous body occupying the reference configuration ��=�×]−�, �[.
We assume that the stored energy function of this body is a func-
tion W:M3 → R which is continuous, coercive and satisfies growth
conditions for an exponent p∈]3,+∞[, where M3 is the space of real
3×3 matrices. We furthermore assume that the body is subjected to
a dead loading body force density f and to a constant pressure dif-
ferential ��p on its upper and lower surfaces, which is a live load,
that is to say a spatially constant pressure p+

� on the upper surface
and another spatially constant pressure p−

� on the lower surface such
that p+

� − p−
� = ��p. The equilibrium problem for this body may be

formulated as a minimization problem for the energy

J�(�) =
∫
��

W(∇�) dx −
∫
��

f� · �dx − P�(�), (1)

where

P�(�) =
∫
��

[
�� det ∇� + 1

3
∇�� · ( cof ∇�T�)

]
dx, (2)

over a set of admissible deformations � belonging to an appropriate
Sobolev space and satisfying given boundary conditions of place on
part of the lateral boundary. Here, �� is a C1-function on �̄� that
takes the values p±

� on the upper and lower surfaces. The term P�
appearing in the energy accounts for the pressure load, see [18].
Note that this term incorporates the fact that a pressure load is a live
load that follows the normal vector to the deformed body, without
having to keep track of this normal vector. Dead loading tractions
on the upper, lower and lateral surfaces can also easily be added as
well as boundary conditions of place on part of the boundary.

In [1,2], see the latter for the pressure term, Le Dret and Raoult
proved that a rescaled version of the above three-dimensional energy
�-converges when the thickness 2� of the membrane goes to zero
in the sense of the weak topology of W1,p(�;R3), thereby showing
that minimizing deformations converge, in an appropriate sense,
toward solutions of a two-dimensional minimization problem. The
limit, two-dimensional non-linear membrane problem is described
as follows.

Let M3,2 be the space of real 3×2 matrices. If z�,�=1, 2, are two

vectors in R3, we note (z1|z2) the matrix of M3,2 whose columns

are the vectors z�. For all F=(z1|z2) ∈ M3,2 and z ∈ R3, we note (F|z)
the matrix whose first two columns are z�, and third column is z
and write (z|F) with a similar convention. We now define a function
W0:M3,2 → R by

W0(F) = inf
z∈R3

W((F|z)). (3)

The function W0 is continuous and coercive. Let QW0 be its qua-
siconvex envelope, see [19]. We introduce the space of admissible
membrane displacements

	M = {
 ∈ W1,p(�;R3);
(x1, x2) = (x1, x2, 0)
T on��}, (4)

(this is for the case of a boundary condition of place on the whole
lateral surface ��×]−�, �[ in the three-dimensional problem, other
conditions are enforced accordingly).

The limit non-linear membrane energy is then defined by

J(
) = 2
∫
�
QW0(∇
) dx1 dx2 −

∫
�
f · 
dx1 dx2

− �p
3

∫
�
det(�1
|�2
|
) dx1 dx2, (5)
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