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Artificial potential fields, which are widely used in robotics for path planning and collision avoidance, are
normally beset by difficulties arising from the existence of local minima. This article proposes a solution
that involves an asymptotically stable point-mass system governed by differential equations. The system
represents a planar point robot moving from its initial position to the desired goal whilst avoiding a static
obstacle. Because the system is asymptotically stable, its Lyapunov function, which produces artificial
potential fields around the goal and the obstacle, has no local minima other than the goal configuration
in the pathwise-connected proper subset of free space which contains the goal configuration. As an
application, we consider the point stabilization of a planar mobile car-like robot moving in the presence
of a static obstacle.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

An ongoing research in robotics involves the identification in a
two- or three-dimensional space a continuous path that allows a
robot, or a part of it, to reach its destination without colliding with
obstacles that may exist in the space. Sometimes referred to as the
findpath problem, it is essentially a geometric problem.

Having being analyzed over the last two decades by many re-
searchers, it is now possible to gather a majority of the proposed
solutions under two categories: (1) those that employ some kind
of graph search technique and (2) those that employ some kind of
physical analogy.

In a graph search technique, a collision-free path is generated by
searching a graph formed out of straight lines that connect the start-
ing position and the destination via the vertices of solid obstacles, or
via patches of free space that have been decomposed into geometric
primitives such as cones and cylinders. Some of the pioneering work
include those in 1983 by Schwartz and Sharir [1], Brooks [2], and
Lozano-Pérez [3], and that in 1986 by Herman [4]. Relatively recent
applications include those by Lam and Srikanthan [5], and Williams
and Jones [6] in 2001, Kruusmaa [7] and Sacks [8] in 2003, Roy [9]
in 2005 and Zeghloul [10] in 2006. Theoretically, graph search tech-
niques are elegant. However, they could involve computationally
intensive algorithms. Simpler algorithms tend to use physical analo-
gies to establish artificial potential fields with repulsive poles around
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obstacles and attractive poles around goals. A collision-free path is
determined by how much the robot is attracted to or repelled by the
poles. Pioneers in this area include Khatib [11] in 1986, Connolly et al.
[12] in 1990, and Tarassenko and Blake [13], and Kim and Khosla [14]
in 1991. Recent extensions and applications include those by Ge and
Cui [15] in 2002, Tanner et al. [16] in 2003 and Lin et al. [17] in 2004.
In any artificial potential fields method, it is a challenge, however, to
construct potential fields that do not have local minima or points of
zero potential and kinetic energy other than the goal configuration.
Several studies have successfully considered this problem via the use
of special functions. The work of Rimon and Koditschek [18] in 1992
with potential functions, and that of Tanner et al. [16] in 2003 with
dipolar inverse Lyapunov functions, are noteworthy. An excellent
summary of the various methods associated with artificial potential
fields can be found in the work of Lee [19] in 2004.

In this article, our intention is to show the viability of directly
using thewell-known secondmethod of Lyapunov to construct a Lya-
punov function that ensures the asymptotic stability of an obstacle-
avoidance system, and hence solves the problem of local minima. The
main advantage of this global potential approach [19] is the ease in
which it can be used to extract control laws. The proposed technique
is based on the 1990 pioneering work of Stonier [20], which was later
expanded and improved in 1998 and 2001 by Vanualailai et al. [21]
and Ha and Shim [22], respectively. In this paper, we consider a pla-
nar obstacle-avoidance system governed by differential equations.
The system consists of a point-mass being controlled to its desti-
nation or target whilst avoiding a fixed object in two-dimensional
space. The proposed Lyapunov function for the system produces ar-
tificial potential fields both for obstacle-avoidance and for target at-
traction. After establishing Lyapunov stability, we then show that it
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is possible to identify a region of asymptotic stability in which the
target is the only minimum point. As an application, we consider
the point stabilization of planar mobile robot, which is car-like and
non-holonomic.

2. The Lyapunov method

Here, we briefly recall some of the important Lyapunov stability
concepts that we will be using to derive our control laws.

Let Rn be the n-dimensional Euclidean space with the Euclidean
norm ‖ · ‖. Let x = (x1, x2, . . . , xn) denote an element of Rn. Consider
an autonomous non-linear system

ẋ = f(x), x(t0) = x0, t0�0, (1)

where f : � ⊂ Rn → Rn is assumed to be smooth enough to guar-
antee the existence, uniqueness and continuous dependence of so-
lutions x(t) = x(t; t0,x0) of (1) in �, an open set in Rn.

For the purpose of considering stability concept in the sense of
Lyapunov, we assume there is a point e0 ∈ Rn such that f(e0) ≡ 0.
Then x(t) ≡ e0 is trivially a solution of (1) through e0 ∈ � for all
t� t0. We call e0 an equilibrium point of system (1).

The equilibrium point e0 of (1) is stable if, for each � >0 and t0�0,
there is a �=�(t0, �) >0 such that ‖x0−e0‖ <� implies ‖x(t)−e0‖ < � for
all t� t0. The equilibrium point e0 of (1) is said to be asymptotically
stable if it is stable and there exists �(t0) >0 such that ‖x(t0)−e0‖ <�
implies limt→∞ ‖x(t)−e0‖=0. The equilibrium point e0 of (1) is said
to be globally asymptotically stable if it is stable and limt→∞ ‖x(t) −
e0‖ = 0 for all x0 ∈ Rn.

Lyapunov's direct method (also called the second method of
Lyapunov) is summarized in the following theorem, where R+ :=
[0,∞):

Theorem 1. Let e0 be an equilibrium point of (1) and let V : � → R+
be a C1 function defined on some neighborhood � of e0 such that (i)
V(e0) = 0, (ii) V(x) >0 for x ∈ �\{e0} and (iii) V̇(x)|(1)�0 for all x ∈
�. Then e0 is stable. If (iii) is replaced by (iii)′ V̇(x)|(1) <0 for all x ∈
�\{e0}, then e0 is asymptotically stable. If e0 is asymptotically stable,
and if, furthermore V(x) is radially unbounded (that is, V(x) → ∞ as
‖x‖ → ∞), then e0 is globally asymptotically stable.

We refer to V in Theorem 1 as a Lyapunov function for system (1).

3. A globally asymptotically stable point-mass system

Consider a point-mass, defined as the disk of radius rP �0, and
positioned at (x(t), y(t)) ∈ R2 at time t�0. That is, the point-mass is

P = {(z1, z2) ∈ R2 : (z1 − x)2 + (z2 − y)2� r2P }. (2)

Its instantaneous velocity is (v(t),w(t)) := (ẋ(t), ẏ(t)). Our general
ODE system is therefore of the form

ẋ(t) = v(x(t), y(t)), ẏ(t) = w(x(t), y(t)),

(x0, y0) := (x(0), y(0)), (3)

and our objective is to steer the point-mass to a goal or target in R2.
The target is defined as the disk with center (�1, �2) and radius rT ,
that is,

T = {(z1, z2) ∈ R2 : (z1 − �1)
2 + (z2 − �2)

2� r2T }
with rT �0 sufficiently small. Let e0 = (�1, �2). We state our first
result:

Theorem 2. Let v(x, y) = −(x − �1) and w(x, y) = −(y − �2). Then the
point e0 is the only equilibrium point of system (3) and is globally
asymptotically stable.

Proof. If v(x, y)=−(x−�1) and w(x, y)=−(y−�2), then it is clear that
e0 = (�1, �2) is the only equilibrium point of the system. To prove
global asymptotic stability, we use the Lyapunov function V(x, y) =
[(x−�1)

2+(y−�2)
2]/2, which is radially unbounded, with V(e0)=0. Its

time-derivative along a trajectory of system (3) is V̇(3)(x, y)= −[(x−
�1)

2+(y−�2)
2], with V̇(3)(x, y) <0 for all (x, y)�e0, and V̇(3)(e0)=0. �

4. An asymptotically stable point-mass system with a fixed
obstacle

We next consider the situation where there is now a fixed ob-
stacle that the point-mass P has to avoid. Precisely, if (o1, o2) is the
center of the disk, and rO is the radius of the disk, then the obstacle
can be defined as

O = {(z1, z2) ∈ R2 : (z1 − o1)
2 + (z2 − o2)

2� r2O}.

Next, we construct an artificial potential field function that guaran-
tees target attraction and collision avoidance.

4.1. Target attraction and collision avoidance

For target attraction, we want to have a measurement, at time
t�0, of the distance between the position (x, y) of the point-mass P
and its target T. A likely function is therefore

G(x, y) := 1
2 [(x − �1)

2 + (y − �2)
2].

For obstacle-avoidance, we want to have a measurement of the dis-
tance between the point-mass P and its obstacle O. Thus, consider
the function

W(x, y) := 1
2 [(x − o1)

2 + (y − o2)
2 − (rO + rP)

2]. (4)

Let us, for the moment, consider, for some constant � >0, the effect
of the ratio �/W . If P approaches the obstacle O, then W decreases
and the ratio increases. Assume next that the ratio is an appropriate
part of a Lyapunov function, V, that establishes the stability of an
equilibrium point of system (1). Because, with respect to time t�0,
we have that dV/dt�0 along a trajectory of (1), and V is a positive
definite function, V cannot increase in t. Therefore any change in
the value of the ratio could only correspond to either an increase
or decrease in |dV/dt|. Analogously, |dV/dt| is the rate of dissipation
of energy from the system in absolute value. If the obstacle is being
approached, then W gets smaller, and the ratio gets larger. Thus, the
rate of energy dissipation, in absolute value, gets larger. This, in turn,
results in an increased activity of the system. This increased activity
could only be directed toward a stable equilibrium point, away from
the obstacle. In other words, we cannot have a situation whereW=0.
Hence, if the ratio is a part of a Lyapunov function for system (1),
then intuitively the ratio will act as an obstacle-avoidance function.

4.2. Lyapunov function as an artificial potential field function

Let � >0 be a constant, and consider as a tentative Lyapunov
function for system (3)

V(x, y) = G(x, y) + �G(x, y)
W(x, y)

. (5)

It is clear that V is continuous and locally positive definite on the
domain D(V) = {(x, y) ∈ R2 : W(x, y) >0}. That is, V(x, y) >0 for all
(x, y) ∈ D(V)\{e0} and V(e0) = 0, with e0 ∈ D(V). It is clear that D(V)
is a pathwise-connected proper subset of R2, meaning that for every
two points in D(V), there is a path connecting them.
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