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fluid impinges on the wall either orthogonally or obliquely. Numerical solutions are obtained using a
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1. Introduction

In recent years, non-Newtonian fluids have become more and
more important industrially. Polymer solutions, polymer melts,
blood, paints and certain oils are the most common examples of
non-Newtonian fluids. Since, Navier–Stokes equations cannot ade-
quately describe such fluids, several non-Newtonian models were
developed. Among those, the non-Newtonian second-grade fluid [1]
has been studied extensively. The equations of motion of such fluids
are highly non-linear and one order higher than the Navier–Stokes
equations. For this reason, one will require boundary conditions in
addition to the non-slip condition to have a well-posed problem.
Only in some special cases where the higher-order non-linear terms
in these equations can be neglected thereby reducing their order,
are the “no-slip” condition sufficient to yield unique solutions.
In general, Rajagopal [2], Rajagopal and Gupta [3], Rajagopal [4]
and Rajagopal and Kaloni [5] have shown that the absence of this
additional boundary condition leads to non-unique solutions for
problems involving the flow of second-grade fluids in a bounded
domain. Therefore, the “no-slip” condition is insufficient to solve the
equations of motions of second-grade fluids completely when the
higher-order non-linearities in these equations cannot be ignored.

One class of flows which has thoroughly been studied in liter-
ature is the stagnation-point flows. Hiemenz [6] derived an exact
solution of the steady flow of a Newtonian fluid impinging orthogo-
nally on an infinite flat plate. Stuart [7], Tamada [8] and Dorrepaal [9]
independently investigated the solutions of a stagnation-point flow
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when the fluid impinges obliquely on the plate. Beard and Walters
[10] used boundary-layer equations to study two-dimensional flow
near a stagnation point of a viscoelastic fluid. Rajagopal et al. [11]
have studied the Falkner–Skan flows of an incompressible second-
grade fluid. Dorrepaal et al. [12] investigated the behaviour of a
viscoelastic fluid impinging on a flat rigid wall at an arbitrary angle of
incidence. Labropulu et al. [13] studied the oblique flow of a second-
grade fluid impinging on a porous wall with suction or blowing.

In a recent paper, Wang [14] studied stagnation-point flows with
slip. This problem appears in some applications where a thin film
of light oil is attached to the plate or when the plate is coated with
special coatings such as a thick monolayer of hydrophobic octade-
cylthichlorosilane [15]. Also, wall slip can occur if the working fluid
contains concentrated suspensions [16].

When the molecular mean free path length of the fluid is com-
parable to the system's characteristic length, then rarefaction effects
must be considered. The Knudsen number Kn, defined as the ratio of
the molecular mean free path to the characteristic length of the sys-
tem, is the parameter used to classify fluids that deviate from con-
tinuum behaviour. If Kn >10, it is free molecular flow, if 0.1 <Kn <10
it is transition flow, if 0.01 <Kn <0.1 it is slip flow, and if Kn <0.01 it
is the viscous flow (see [14,17]). Flows in the slip-flow region have
beenmodelled using the Navier–Stokes equations and the traditional
non-slip condition is replaced by the slip condition

ut = Ap
�ut
�n

(1)

where ut is the tangential velocity component, n is normal to the
plate, and Ap is a coefficient close to 2(mean free path)/

√
� (see [18]).

This condition was first proposed by Navier [19] nearly 200 years
ago.
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Over the years, various other slip conditions have been con-
sidered. Recently, Rao and Rajagopal [20] reviewed several slip
conditions and showed that the usual assumption that slip de-
pends only on the shear stress at the wall may not be correct
for some flows. They investigated linearly viscous flow in a chan-
nel and included normal stresses in describing the slip velocity
at the walls. They found the solutions obtained by doing so were
qualitatively different from that obtained assuming shear stresses
only.

In the present work, we followed Wang [14] and considered the
original slip condition as given by Navier in (1). We investigate the
behaviour of the non-Newtonian second-grade fluid impinging on a
rigid wall with slip. The fluid impinges on the wall either orthog-
onally or obliquely. In particular, we study the effects of the slip
condition and the effects of the viscoelasticity of the fluid on the
stagnation-point.

2. Flow equations

The flow of a viscous incompressible non-Newtonian second-
grade fluid, neglecting thermal effects and body forces, is governed
by

div V∗
∼ =0 (2)

� V̇∗
∼ =div T≈ (3)

when the constitutive equation for the Cauchy stress tensor
T≈ which describes second-grade fluids given by Rivlin and Ericksen

[1] is

T≈ = − p∗ I≈ +�A1≈
+�1 A2≈

+�2 A21≈
A1≈

=(grad V∗
∼ ) + (grad V∗

∼ )T

A2≈
= Ȧ1≈

+(grad V∗
∼ )T A1≈

+A1≈
(grad V∗

∼ )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

where V∗
∼ is the velocity vector field, p∗ the fluid pressure function,

� the constant fluid density, � the constant coefficient of viscosity
and �1, �2 the normal stress moduli.

For a two-dimensional flow, we take V∗
∼ =(u∗(x∗, y∗), v∗(x∗,

y∗)) and p∗ = p∗(x∗, y∗) so that the flow equations (2)–(3)
become

�u∗
�x∗ + �v∗

�y∗ = 0 (5)

u∗ �u∗
�x∗ + v∗ �u∗

�y∗ + 1
�

�p∗
�x∗

= �∇∗2u∗ + �1
�

{
�

�x∗

[
2u∗ �2u∗

�x∗2 + 2v∗ �2u∗
�x∗�y∗ + 4

(
�u∗
�x∗

)2

+ 2
�v∗
�x∗

(
�v∗
�x∗ + �u∗

�y∗
)]

+ �
�y∗
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u∗ �

�x∗ + v∗ �
�y∗

)
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(

�v∗
�x∗ + �u∗

�y∗
)

+ 2
�u∗
�x∗

�u∗
�y∗ + 2

�v∗
�x∗

�v∗
�y∗
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+ �2
�
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4
(
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+
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)2]

(6)
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(7)

where �=�/� is the kinematic viscosity. The star on a variable indi-
cates its dimensional form. Using the non-dimensional variables

x = x∗
√

�
�
, y = y∗

√
�
�

u = 1√
��

u∗, v = 1√
��

v∗, p = 1
���

p∗

where � has the units of inverse time, the flow equations take the
form

�u
�x

+ �v
�y

= 0 (8)
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where We = �1�/�� is the Weissenberg number and � = �2�/��.
Using continuity equation (8), we define the streamfunction

	(x, y) such that

u = �	
�y

, v = −�	
�x

(11)

Substitution of (11) in Eqs. (9) and (10) and elimination of pressure
from the resulting equations using pxy = pyx yields

�(	,∇2	)
�(x, y)

− We
�(	,∇4	)

�(x, y)
+ ∇4	 = 0 (12)

Having obtained a solution of Eq. (12), the velocity components are
given by (11) and the pressure can be found by integrating Eqs. (9)
and (10).
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