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It is well known that rotors become unstable beyond a certain threshold spinning speed due to the
non-conservative circulatory forces, which arise out of rotating internal damping. In this note, it is shown
that if the source loading of the non-ideal drive is considered then this instability manifests itself as a
constant rotor spinning speed and a constant amplitude whirl orbit about an unstable equilibrium. A
DC motor drive is considered and the corresponding steady-state spinning frequency and whirl orbit
amplitude are analytically derived as functions of the drive and the rotor system parameters.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The modified Maxwell–Bloch equation [1–5]

q̈ + i��q̇ + (� + �)q̇ + i��q + �q = 0, q = x − iy (1)

is used to model a range of rotationally symmetric planar dynamical
systems. The variables in Eq. (1), in the context of a discrete model
of a symmetric rotor–shaft system shown in Fig. 1, are as follows:
q is a complex variable, � is a gyroscopic parameter, � is the rotor
spinning speed, � and � are parameters related to external (or fixed)
damping and internal (or rotating) damping, respectively, and � is a
parameter related to potential forces.

In this simple rotor model consisting of a heavy disk mounted
symmetrically on a light flexible shaft, which in turn is supported on
two identical rigid bearings, it is assumed that the disk and the shaft
are fastened to rotate together and the rotor is perfectly balanced.
Torsional modes of vibration are not considered in this study. The
stiffness of the shaft, the internal or material damping, and the aerial
or external damping are referred to the disk center. In Fig. 1, the
disk center is shown in a deflected position during whirling and
the springs represent the equivalent bending stiffness of the rotor
shaft.
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The stability domain of the system whose dynamics is described
by Eq. (1) is derived in [1] as

� >0, �� >
��

� + �
− � + �

��
�. (2)

In available studies in literature, it is assumed that a constant speed
motor, which adjusts its output power to maintain the desired speed
against any driven load, drives the rotor shaft. If it is assumed that
the disk does not rotate about its diameters (owing to the symmetry
of the system) then the gyroscopic parameter is neglected and the
inequalities in (2) reduce to the well-known stability domain of a
symmetric non-gyroscopic rotor system [6,7] given by

Re >0, |�| <�n

(
1 + Re

Ri

)
, (3)

where � = K/m = �2
n, � = Re/m, � = Ri/m, K is the bending stiffness

referred to the disk center, m is the mass of the centrally loaded
disk, and Re and Ri are the equivalent external and internal damping
referred to the rotor disk center.

These stability conditions can be derived in a variety of ways [8],
e.g. Billharz condition [1–3] or Lienard–Chipart criterion [4,5] applied
to the complex characteristic polynomial, Routh stability condition
applied to real characteristic polynomial, eigenvalue analysis, energy
methods [6,7], etc.

This work precisely deals with such cases where the rotor spin-
ning speed is decided by the dynamics of the motor which is influ-
enced by the source loading, i.e. the spinning and whirling of the
rotor shaft. In particular, the nature of the steady-state dynamics
will be explored.
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Fig. 1. A Symmetric rotor–shaft system with spinning speed �. The stiffnesses of
the shaft and the internal and external damping are referred to the rotor disk.

2. Source loading of a DC motor drive

In a non-ideal source, the excitation is influenced by the re-
sponse of the system. The structural response of the system to which
an unbalanced non-ideal electrical motor is connected acts like en-
ergy sink under certain conditions thereby leading to a kind of
jump-phenomena called the Sommerfeld effect [9–15]. This jump-
phenomenon is characterized by the inability to realize certain mo-
tor speeds near the resonance frequency. Recent research has been
mainly focused on control of the passage through resonance with a
non-ideal source [16–18]. This work assumes a balanced rotor–shaft
system and concerns the influence of a non-ideal DC motor source
on the post-critical stability behavior.

Consider that a DC motor drives the rotor shaft. For simplicity,
it is assumed that the rotor shaft is torsionally rigid although the
obtained results would be still valid without this assumption. The
non-linear equations of motion of the system by including the drive
dynamics is then given by

mẍ + (Re + Ri)ẋ + Ri�̇y + Kx = 0,

mÿ + (Re + Ri)ẏ − Ri�̇x + Ky = 0,

Ir�̈ + Rr�̇ = 	m − 	L, (4)

where � is the rotation of the rotor, Rr is the torsional damping of-
fered to the spinning shaft (due to bearings and the medium), Ir
is the rotary inertia of the shaft–disk system about the spinning
axis, 	m is the torque developed by the motor, and 	L is a torque
contributing to the source loading by the non-conservative forces.
Note that in the mathematical model of the rotor–motor system
given in Eq. (4), the gyroscopic moments acting on the bending
modes are neglected (they will be included later). Further note that
the non-conservative circulatory forces (terms Ri�̇x and Ri�̇y) ap-
pear in Eq. (4) due to rotating material damping of the rotor shaft
[6,7,19,20].

A brushed DC motor model is considered as follows:

im = Vs − Ve
Rm

= Vs − 
m�̇
Rm

, 	m = 
mim, (5)

where Vs is a constant voltage applied across the motor's terminals,

m is a motor characteristic, im is the current drawn by the motor,
Ve = 
m�̇ is the back EMF developed in the motor coils, Rm is the
electrical resistance of the coils, and 	m is the torque developed by
the motor. The mechanical power developed by the motor is Wm =
	m�̇ and the power lost through electrical resistances is Wl = i2mRm.

Fig. 2. DC motor characteristics.

For �̇ = 0, i.e. the braking condition, the brake torque is 	b =

mVs/Rm, the corresponding current drawn is ib = Vs/Rm and brake
power isWb=V2

s /Rm. Themaximum unloadedmotor speed is �̇max=
Vs/
m. The characteristics of the considered DC motor are then
obtained as shown in Fig. 2, where all plotted variables are non-
dimensional quantities.

The system considered in Eq. (4) is a rotationally symmetric (SO2
symmetric) [21] planar dynamical system. Therefore, it is justified to
select a rotationally symmetric solution, e.g. point, circle and spiral,
for Eq. (4). We seek a steady-state SO2 symmetric solution, which
happens to be a circular motion about the equilibrium point. In [22],
energy considerations have been used to analyze a continuous Beck's
column. It has been argued that harmonic vibrations characterized
by a constant energy state exist at the critical load [22–24]. Likewise,
properties of the asymptotic state of a tippe top have been analyzed
in [4] by finding a constant energy state where the slip velocity
vanishes or alternatively by taking orbital derivative of the total
energy.

By removing the spatial variable from the harmonic vibrations
assumed in [22], the SO2 symmetric steady-state motion of the disk
is considered as

x = A cos(�t + �), y = A sin(�t + �), (6)

where A is an unknown amplitude, � is an unknown whirling fre-
quency, and � is an arbitrary phase. Moreover, let the steady-state
rotor spinning speed be �̇|t→∞ =�m. Substitution of Eq. (6) into the
first two equations in Eq. (1) and exclusion of the trivial solution
A = 0 yields

� = �n = ±
√
K/m,

�m = �(1 + Re/Ri). (7)

Obviously, if the motor spinning is considered to be positive, one
has to deal with only the positive whirl because the backward whirl
would not satisfy the second condition in Eq. (7), which agrees with
well-known results pertaining to stability of the backward whirl in
rotor systems.

The mechanical power drawn from the motor during steady-state
whirling is

Wm = 	m�m = 
mim�m = 
m(Vs − 
m�m)�m
Rm

= 
m
Rm

(
Vs − 
m�

(
1 + Re

Ri

))
�

(
1 + Re

Ri

)
. (8)
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