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Solar sail dynamics in the three-body problem:
Homoclinic paths of points and orbits
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Abstract

In this paper we consider the orbital dynamics of a solar sail in the Earth–Sun circular restricted three-body problem. The equations of
motion of the sail are given by a set of non-linear autonomous ordinary differential equations, which are non-conservative due to the non-
central nature of the force on the sail. We consider first the equilibria and linearisation of the system, then examine the non-linear system
paying particular attention to its periodic solutions and invariant manifolds. Interestingly, we find there are equilibria admitting homoclinic
paths where the stable and unstable invariant manifolds are identical. What is more, we find that periodic orbits about these equilibria also
admit homoclinic paths; in fact the entire unstable invariant manifold winds off the periodic orbit, only to wind back onto it in the future. This
unexpected result shows that periodic orbits may inherit the homoclinic nature of the point about which they are described.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A solar sail is a novel type of spacecraft which uses the
radiation pressure of photons reflecting off large sails as its
impulse (see [1] for a detailed description). They are therefore
of interest as they do not require fuel in the traditional sense.
In addition, solar sails are capable of trajectories and orbits
which are beyond conventional spacecraft (see for example the
GeoSail mission [2]). A natural setting for the solar sail is
the circular restricted three-body problem (CR3BP) where the
Earth and the Sun are the primary bodies. This is partly because
the three-body problem more accurately describes solar system
dynamics than the 2-body problem, but also because in the
three-body problem there are regions where the gravitational
forces on the sail due to the primaries cancel each other, and
hence the radiation pressure force on the sail plays a more
dominant role. Also, the demands on sail efficiency would be
less as the gravitational forces are less, and thus the applications
of this analysis are more in the near-term.
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A standard procedure in analysing a non-linear system of
ODE’s is to find its equilibria or fixed points, linearise about
these, and use the information from linear order to inform an
analysis of the non-linear system; this is the procedure we will
follow in this paper. In particular we will direct our attention to
the non-linear system’s periodic orbits and invariant manifolds.
There has been some work carried out on the dynamics of solar
sails in the CR3BP. McInnes et al. [3] first described the sur-
faces of equilibrium points, and some possible uses of same.
In Baoyin and McInnes [4] and McInnes [5], the authors de-
scribe periodic orbits about equilibrium points in the solar sail
three-body problem, however they consider only equilibrium
points on the axis joining the primary masses, corresponding
to artificial Lagrange points. Such orbits are analogous to the
classical ‘halo’ orbits (where by classical we mean the particle
is only acted upon by gavitational forces), which are well doc-
umented, for example Farquhar [6], Farquhar and Kamel [7],
Breakwell and Brown [8], Richardson [9], Howell [10] and
Thurman and Worfolk [11]. With regards to the invariant man-
ifolds, there has been much analysis of the invariant manifolds
of halo orbits in the classical problem for the sake of effi-
cient transfer; for example the Genesis mission trajectory was
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designed using this technique (see [12]), and a ‘petit grand tour’
of Jovian moons has been proposed using a similar analysis
(see [13]). Some homoclinic paths for the classical triangular
points have been found for large mass ratios (see for example
[14]), and homoclinic paths can exist for collinear points with
particular mass ratios (see [15, Section 9.9.2]). Certain isolated
homoclinic paths have been found for periodic orbits about the
collinear Lagrange points (see for example [16]), however no
periodic orbit whose invariant manifold is made up entirely of
homoclinic paths has been found thus far, to the best of our
knowledge.

The structure of the paper is as follows: in the next section
we will describe the setting of the problem and the equa-
tions of motion of the solar sail, as well as the equilibrium
points. Section 3 considers the system linearised about equi-
librium and the form of the linear solutions. In Section 4 we
briefly describe the Lindstedt–Poincaré perturbation method
used to find non-linear approximations to periodic orbits,
and in Section 5 we examine the invariant manifolds of
equilibria and periodic orbits. We find a large variety in the
position, inclination, amplitude and frequency of periodic so-
lutions to the equations off motion, and unexpected homoclinic
paths associated with equilibria and periodic orbits which have
no analogue in the classical problem. Such results suggest
that the solar sail CR3BP presents a rich and complex model,
the intricate details of which are only beginning to become
apparent.

2. Equations of motion in the rotating frame

We follow the conventions set out in McInnes [1]. We con-
sider a rotating coordinate system in which the primary masses
are fixed on the x-axis with the origin at the centre of mass,
the z-axis is the axis of rotation and the y-axis completes the
triad. We chose our units to set the gravitational constant, the
sum of the primary masses, the distance between the primaries,
and the magnitude of the angular velocity of the rotating frame
to be unity. We shall denote by � = 3 × 10−6 the dimension-
less mass of the smaller body m2, the Earth, and therefore
the mass of the larger body m1, the Sun, is given by 1 − �
(see Fig. 1).

Fig. 1. The rotating coordinate frame and the sail position therein. The angles � and � which the sail normal makes with respect to the rotating frame are
also shown.
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Fig. 2. Surfaces of equilibrium points in the xe–ze parameter space. Each
curve is specified by a constant value of �, and the position of the equilibrium
point along the curve is given by �. The grey shaded regions denote areas
where equilibrium is not possible.

Denoting by r, r1 and r2 the position of the sail w.r.t. the
origin, m1 and m2, respectively, the solar sail’s equations of
motion in the rotating frame are

d2r
dt2

+ 2� × dr
dt

= a − � × (� × r) − ∇V ≡ F, (1)

with �= ẑ and V =−[(1−�)/r1 +�/r2] where ri =|ri |. These
differ from the classical equations of motion in the CR3BP by
the radiation pressure acceleration term

a = �
(1 − �)

r2
1

(̂r1 · n)2n, (2)

where � is the sail lightness number, and is the ratio of the
solar radiation pressure acceleration to the solar gravitational
acceleration. Here n is the unit normal of the sail and describes
the sail’s orientation. We define n in terms of two angles � and
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