Accepted Manuscript

Fire resistance of ultra-high performance strain hardening cementitious composite: Residual mechanical properties and spalling resistance

Jin-Cheng Liu, Kang Hai Tan

PII: S0958-9465(17)30985-X

DOI: 10.1016/j.cemconcomp.2018.02.014

Reference: CECO 2999

To appear in: Cement and Concrete Composites

Received Date: 2 November 2017

Revised Date: 16 January 2018

Accepted Date: 22 February 2018

Please cite this article as: J.-C. Liu, K.H. Tan, Fire resistance of ultra-high performance strain hardening cementitious composite: Residual mechanical properties and spalling resistance, *Cement and Concrete Composites* (2018), doi: 10.1016/j.cemconcomp.2018.02.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Fire resistance of ultra-high performance strain hardening
2	cementitious composite: residual mechanical properties and spalling
3	resistance
4	Jin-Cheng Liu ^a , Kang Hai Tan ^{a,} *
5	^a School of Civil and Environmental Engineering, Nanyang Technological
6	University, 639798, Singapore
7	
8	* Corresponding author.
9	N1-01c-97, 50 Nanyang Avenue, 639798, Singapore.
10	E-mail: ckhtan@ntu.edu.sg.
11	

12 Abstract

13	Ultra high performance strain hardening cementitious composites (UHP-SHCC) is a
14	special type of cement-based composite material with outstanding mechanical and
15	protective performance at room temperature. But its fire performance is unknown and
16	there is a lack of research in this aspect. This study presents an experimental program
17	to study fire resistance of UHP-SHCC under two aspects, viz. high-temperature
18	explosive spalling resistance and residual mechanical performance after a fire. Both
19	compressive strength and tensile strength of UHP-SHCC were found to deteriorate
20	with increasing exposure temperature. Tensile strain-hardening feature of UHP-SHCC
21	would be lost at 200 °C and above. It was found that PE fibers are found not effective
22	in mitigating explosive spalling, although they start to melt at 144 °C. FE-SEM (Field
23	Emission Scanning Electron Microscopy) and EDX (Energy Dispersive X-ray)
24	techniques were used to study the state of fiber, fiber/matrix interaction, and

Download English Version:

https://daneshyari.com/en/article/7883699

Download Persian Version:

https://daneshyari.com/article/7883699

Daneshyari.com