Accepted Manuscript

Effect of curing time on granulated blast-furnace slag cement mortars carbonation

Miguel Ángel Sanjuán, Esteban Estévez, Cristina Argiz, Daniel del Barrio

PII: S0958-9465(17)30858-2

DOI: 10.1016/j.cemconcomp.2018.04.006

Reference: CECO 3042

To appear in: Cement and Concrete Composites

Received Date: 18 September 2017

Revised Date: 9 February 2018

Accepted Date: 11 April 2018

Please cite this article as: Miguel.Á. Sanjuán, E. Estévez, C. Argiz, D.d. Barrio, Effect of curing time on granulated blast-furnace slag cement mortars carbonation, *Cement and Concrete Composites* (2018), doi: 10.1016/j.cemconcomp.2018.04.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of curing time on granulated blast-furnace slag cement mortars carbonation

2 Miguel Ángel Sanjuán^{a, *}, Esteban Estévez^b, Cristina Argiz^c, Daniel del Barrio^b

^a Spanish Institute for Cement and its Applications (IECA), C/ José Abascal, 53, 28003 Madrid, Spain. masanjuan@ieca.es

b Department of Cement Chemical Testing, LOEMCO. Polytechnic University of Madrid (UPM), Avda. Eric Kandel 0001, LOEMCO Building.

South Tecnológical Area "Acedinos". 28906 - GETAFE (Madrid), Spain. eestevez@loemco.com and dbarrio@loemco.com

^c Department of Science and Technology of Building Materials, Civil Engineering School, Polytechnic University of Madrid (UPM), 28040 Madrid,

7 Spain. cg.argiz@upm.es

* Corresponding author: Miguel Ángel Sanjuán +34 628 623817 - masanjuan@ieca.es

9 Abstract

Currently, ground granulated blast-furnace slag cements use in cement-based materials is being increasing because perform well in marine and other aggressive environments. However, mortars and concretes made of this type of cement exhibit high carbonation rates, particularly in badly cured cement-based materials and when high blast-furnace slag contents are used. Concrete reinforcement remains passive but can be corroded if the pore solution pH drops as a result of the carbonation process promoting the reinforced concrete structure failure during its service life. Results show the very sensitive response to wet-curing time of slag mortars with regard to the natural carbonation resistance. Then, a minimum period of 3-7 days of wet curing is required in order to guarantee the usual projected service life in reinforced concrete structures. In this work, estimation models of carbonation depth and carbon dioxide diffusion coefficient in ground granulated blast-furnace slag mortars as a function of the curing period and the amount of ground granulated blast-furnace slag are proposed. This information will be useful to material and civil engineers in designing cement-based materials and planning the required curing time depending on their ground granulated blast-furnace slag content.

Keywords: Ground granulated blast-furnace slag; Cement; Durability; Carbonation testing; Carbon

25 dioxide.

Download English Version:

https://daneshyari.com/en/article/7883831

Download Persian Version:

https://daneshyari.com/article/7883831

<u>Daneshyari.com</u>