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On sheet-driven motion of power-law fluids

H.I. Anderssona,∗, V. Kumaranb

aDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
bDepartment of Mathematics, National Institute of Technology, Tiruchirappalli 620 015, Tamilnadu, India

Received 3 March 2006; received in revised form 21 December 2006; accepted 21 December 2006

Abstract

A rigorous analysis of non-Newtonian boundary layer flow of power-law fluids over a stretching sheet is presented. First, a systematic
framework for treatment of sheet velocities of the form U(x)=Cxm is provided. By means of an exact similarity transformation, the non-linear
boundary layer momentum equation transforms into an ordinary differential equation with m and the power-law index n as the only parameters.
Earlier investigations of a continuously moving surface (m = 0) and a linearly stretched sheet (m = 1) are recovered as special cases.

For the particular parameter value m = 1, i.e. linear stretching, numerical solutions covering the parameter range 0.1�n�2.0 are presented.
Particular attention is paid to the most shear-thinning fluids, which exhibit a challenging two-layer structure. Contrary to earlier observations
which showed a monotonic decrease of the sheet velocity gradient −f ′′(0) with n, the present results exhibit a local minimum of −f ′′(0) close
to n=1.77. Finally, a series expansion in (n−1) is proved to give good estimates of −f ′′(0) both for shear-thinning and shear-thickening fluids.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Non-linear fluid rheology is encountered in numerous prac-
tical situations and the study of non-Newtonian fluid motion
is accordingly an important subset of fluid mechanics. Among
the most popular rheological models for non-Newtonian fluids
is the power-law or Ostwald–deWaele model. This model is a
simple non-linear equation of state for inelastic fluids which
includes linear Newton-fluids as a special case. The power-
law model provides an adequate representation of many non-
Newtonian fluids over the most important range of shear rates.
This, together with its apparent simplicity, has made it a very
attractive model both in analytical and numerical research. An
account of the earlier investigations is provided in the introduc-
tion to the computational study by Andersson and Toften [1],
while recent analytical considerations by Denier and Dabrowski
[2] addressed some of the mathematical subtleties associated
with the power-law model.

∗ Corresponding author. Tel.: +47 73 59 35 56; fax: +47 73 59 34 91.
E-mail address: helge.i.andersson@ntnu.no (H.I. Andersson).

0020-7462/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijnonlinmec.2006.12.006

A particular class of flow problems, which has received con-
siderable attention over the years, is the fluid flow driven by the
motion of a flat surface. The moving surface, which might be
a polymer sheet or an extruded filament, emerges from a slit,
from which a viscous boundary layer flow develops in the direc-
tion of the moving surface. This problem was first analyzed by
Sakiadis [3,4] who studied the boundary layer flow driven by a
continuously moving sheet, whereas Crane [5] considered the
corresponding problem of flow induced by a linearly stretched
surface. Thereafter Afzal and Varshney [6] and Banks [7] in-
dependently provided a unified analysis for more general sheet
boundary conditions, which included Sakiadis’ and Crane’s so-
lutions as special cases. Banks [7] also pointed out some ear-
lier works that arrived to the same governing equation as that
obtained for sheet-driven fluid motion, but in a rather different
context.

This class of flow problems, notably the Sakiadis boundary
layer and the Crane boundary layer, has been extended to fluids
exhibiting non-Newtonian rheology. While Chiam [8] consid-
ered the motion of a micropolar fluid over a stretching sheet,
the corresponding flow of elastico-viscous fluids was studied
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by Siddappa and Khapate [9], Rajagopal et al. [10], Siddappa
and Abel [11] and Maneschy et al. [12]. These and more re-
cent studies rely on boundary-layer-type approximations in or-
der to simplify the Cauchy equation. The applicability of the
conventional boundary layer concept to non-Newtonian fluids
has been addressed by Bizzel and Slattery [13], Astin et al.
[14], Rajagopal et al. [15] and more recently by Denier and
Dabrowski [2].

We now confine ourselves to the flow of inelastic power-law
fluids driven by a flat surface. Following for instance Mansutti
and Rajagopal [16], the constitutive equation for a power-law
fluid can be expressed as

T = −pI + K(trA2)MA. (1)

Here, the Cauchy stress tensor T is expressed in terms of the
pressure p, the material constants K and M and the identity
matrix I, while the first Rivlin–Ericksen tensor A is defined in
terms of the velocity vector u as

A = (grad u) + (grad u)T. (2)

Newtonian (i.e. linear) rheology is recovered for M = 0, while
positive and negative M-values correspond to shear-thickening
and shear-thinning fluids, respectively. The analysis of Sakiadis
[3,4] of Newtonian flow over a continuously moving sheet was
extended to power-law fluids by Fox et al. [17], while Crane’s
[5] work on a Newtonian flow driven by a linearly stretching
sheet was extended by Andersson and Dandapat [18] to power-
law fluids. Yürüsoy [19] very recently studied the unsteady flow
of a power-fluid driven by a linearly stretched sheet where the
stretching rate decreased with time.

In the present paper, we first aim to provide a unified analysis
of non-Newtonian fluid flow driven by a steadily moving plane
sheet with a surface velocity proportional to the distance from
the slit raised to an arbitrary power m. New numerical results
for the particular parameter value m=1, covering a wider range
of the power-law index n = 2M + 1, will be presented herein,
together with accurate series solutions for n close to unity and an
asymptotic solution for the highly non-linear parameter range
n < 0.5.

2. Problem formulation

2.1. Governing equations of motion

We consider the steady and two-dimensional flow governed
by the boundary layer equations:
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which assure conservation of mass and streamwise momentum,
respectively. Here, u and v denote the velocity components in
the streamwise (x) and the cross-stream (y) directions, respec-
tively. The power-law fluid is represented by the rheological

equation of state (1), which in Cartesian tensor notation be-
comes

Tij = −p�ij + 2K(DklDkl)
(n−1)/2 · Dij , (5)

where Tij and Dij are the stress and strain rate tensors, K and
n are the consistency coefficient and power-law index and �
is the fluid density. It is noteworthy that the power-law index
n is related to the exponent M in Eq. (1) as n = 2M + 1.
The constitutive equation (5) represents shear-thinning (pseudo-
plastic) fluids for n < 1 and shear-thickening (dilatant) fluids
for n > 1, whereas n= 1 corresponds to Newtonian (i.e. linear)
rheology.

Within the boundary layer approximation, the essential off-
diagonal stress component simplifies to
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and becomes the only stress component of dynamic signifi-
cance. The governing momentum equation (4) can therefore be
written as
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Here, and on the right-hand side of Eq. (6), the shear rate �u/�y

has been assumed to be negative throughout the entire bound-
ary layer since the streamwise velocity component u decreases
monotonically with the distance y from the moving surface.

A rigorous derivation and subsequent analysis of the bound-
ary layer equations for power-law fluids were recently pro-
vided by Denier and Dabrowski [2]. They focused on bound-
ary layer flow driven by a freestream U(x) ∼ xm, i.e. of the
Falkner–Skan type. Such boundary layer flows are driven by a
streamwise pressure gradient −dP/dx = �U dU/dx set up by
the external (inviscid) freestream outside the viscous bound-
ary layer. In the present context, however, no driving pressure
gradient is present. Instead, the flow is driven solely by a flat
surface which moves with a prescribed velocity U(x) = Cxm,
where x denotes the distance from the slit from which the sur-
face emerges and C(> 0) and m are constants. The relevant
boundary conditions for the problem at hand thus become:

u(x, 0) = Cxm, (8a)

v(x, 0) = 0, (8b)

u → 0 as y → ∞. (8c)

While (8c) ascertains that the fluid velocity vanishes outside
the boundary layer, the requirement (8b) signifies imperme-
ability of the stretching surface positioned at y = 0, whereas
(8a) assures no-slip at the surface, i.e. zero velocity difference
between the fluid and the surface. Besides the boundary con-
ditions (8), the auxiliary requirement that the shear stress Txy

should vanish outside the momentum boundary layer needs to
be satisfied by a proper solution. This latter requirement ap-
plies both for Newtonian (n = 1) and non-Newtonian (n �= 1)
fluids and its importance was recently addressed by Andersson
and Aarseth [20].
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