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Stagnation-point flow of upper-convected Maxwell fluids
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Abstract

Two-dimensional stagnation-point flow of viscoelastic fluids is studied theoretically assuming that the fluid obeys the upper-convected
Maxwell (UCM) model. Boundary-layer theory is used to simplify the equations of motion which are further reduced to a single non-linear
third-order ODE using the concept of stream function coupled with the technique of the similarity solution. The equation so obtained was
solved using Chebyshev pseudo-spectral collocation-point method. Based on the results obtained in the present work, it is concluded that the
well-established but controversial prediction that in stagnation-point flows of viscoelastic fluids the velocity inside the boundary layer may
exceed that outside the layer may just be an artifact of the rheological model used in previous studies (namely, the second-grade model). No
such peculiarity is predicted to exist for the Maxwell model. For a UCM fluid, a thickening of the boundary layer and a drop in wall skin
friction coefficient is predicted to occur the higher the elasticity number. These predictions are in direct contradiction with those reported in
the literature for a second-grade fluid.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Boundary-layer theory has been the working horse of modern
fluid mechanics since its introduction to the engineering world
by Prandtl in the early 1990s [1]. That is, over the past century,
many engineering fluid mechanical problems have been solved
using this theory rendering results which compare well with
experimental observations—at least as far as Newtonian flu-
ids are concerned. In spite of the success of this theory for
Newtonian fluids, an extension of the theory to non-Newtonian
fluids has turned out to be a rather formidable task [2–4]. The
main difficulty in reaching to a general boundary-layer theory
for non-Newtonian fluids lies obviously in the diversity of these
fluids in their constitutive behavior. Further difficulty arises
from their simultaneous viscous and elastic properties such that
differentiating between those effects which arise as a result of
a fluid’s shear-dependent viscosity from those which are at-
tributable to the fluid’s elasticity becomes virtually impossible.
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Therefore, it is not surprising that most studies dealing with
non-Newtonian boundary layers are concerned mainly with
simple rheological models such that these two effects can be
addressed separately.

In spite of the incompleteness of current boundary-layer the-
ories for viscoelastic fluids, preliminary studies made on the
basis of simple rheological models (albeit admittedly limited in
their scope and range of applicability) have served to show that
much richer behavior can be expected for non-Newtonian flu-
ids as compared with Newtonian ones [3]. For example, while
blowing through an infinite porous fluid has no exact solution
for Newtonian fluids, for certain non-Newtonian fluids, on the
other hand, an exact solution has been found in this particular
flow [5]. Also, it has been shown that while for non-Newtonian
fluids boundary layers are formed only at large Reynolds num-
bers, for non-linear fluids they can form even at small Reynolds
numbers [3,4]. But perhaps the most striking characteristic
of viscoelastic boundary layers is the notion that boundary
layers of different natures (inertial vs. elastic) may develop
[3] in these fluids sometimes exhibiting complicated multiple
deck structures with different effects dominating in different
decks [6].
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The state of despair as to the incompleteness of current
boundary-layer theories for viscoelastic fluids can best be seen
when dealing with the stagnation-point flow of such fluids.
That is, whereas for Newtonian fluids this particular flow
renders itself to an exact solution valid at any Reynolds num-
ber [7], in contrast, even for one of the simplest viscoelastic
fluid models available, i.e., the so-called second-grade model
[8], no such an exact solution does exist. As a matter of
fact, Rajeswari and Rathna [9] had to rely on boundary-layer
approximations in order to obtain an estimation of the wall
shear stress in stagnation-point flow of a second-grade fluid. To
solve the governing equation, Rajeswari and Rathna [9] made
use of the Karman–Pohlhausen momentum integral method
[7] and concluded that the wall shear stress becomes larger the
higher the fluid’s elasticity. Their finding was later corroborated
by Davies [10] using a similar approach. In another fundamen-
tal work dealing with stagnation-point flows of second-grade
fluids, Beard and Walters [11] reduced the governing PDEs
to a single non-linear fourth-order ODE using boundary-layer
theory combined with the concept of similarity solution. The
equation so obtained turned out to be still a difficult problem
to solve due to the lack of sufficient physical boundary condi-
tions. Relying on perturbation technique [12] to circumvent the
problem with the extra boundary condition, Beard and Wal-
ters [11] converted their singular perturbation problem into a
regular one by reducing the equations to a system of two third-
order ordinary differential equations (good enough to be solved
numerically with available boundary conditions). From their
numerical results, Beard and Walters [11] reached to the general
conclusion that the main effect of a fluid’s elasticity is to in-
crease the wall shear stress, as previously reported by Rajeswari
and Rathna [9]. But unlike Rajeswari and Rathna [9], and also
Davies [10], Beard and Walters [11] predicted an overshoot in
the velocity inside the boundary layer as a result of the fluid’s
elasticity. No experimental data has ever been presented to
validate the significance of any of these theoretical predictions.

Beard and Walters’ prediction that in stagnation-point flows
of viscoelastic fluids velocity inside the boundary layer may
exceed that outside the layer has stimulated many researchers
over the past 40 years to investigate its validity. Frater [13]
appears to be the first to suggest that the overshoot of the
velocity in the boundary layer might be due to seeking a regular
perturbation solution of the problem in terms of an elasticity
number. Recent findings by Teipel [14], Garg and Rajagopal
[15], and Pakdemirli and Suhubi [16] have demonstrated that
the perturbation technique may not render satisfactory results
when dealing with viscoelastic fluids. The shortcomings of the
perturbation method in dealing with stagnation-point flows of
second-grade fluids has beautifully been demonstrated by Ariel
[17]. Using an accurate hybrid method (combining the features
of the finite difference technique and the shooting method),
Ariel [17] attempted to solve the original fourth-order ODE
instead of the perturbed set. He had to augment the number
of required boundary conditions to four in order to solve the
fourth-order ODE, and this was done by imposing an extra
condition at the wall based on the governing equation itself.
The results obtained by Ariel [17] turned out to be quite

different from those reported by Beard and Walters [11] es-
pecially for k > 0.1. In another interesting work tackling with
the original fourth-order ODE instead of the perturbed set,
Serth [18] showed that the wall shear stress calculated using
the orthogonal collocation-point method are quite different
from those obtained from the perturbation method (with the
difference becoming larger the higher the elasticity number k).
The work carried out by Garg and Rajagopal in this area [15]
is quite striking in that they have shown that the sign adopted
by Beard and Walters (and many others) for the elasticity
number, k, must be reversed in order for their second-grade
model to comply with theromodynamical constraints [19,20].
In fact, by reversing the sign of k in the fourth-order ODE
derived by Beard and Walters [11], and by augmenting the
number of required boundary conditions to four by imposing
the extra boundary condition at infinity, i.e., f ′′(∞) = 0, Garg
and Rajagopal [15] solved the original fourth-order ODE and
observed no overshoot in the velocity profiles at any k. In-
terestingly, it was shown by Ariel [21] that by changing the
sign of the elasticity number in the governing equation, his
hybrid method enables getting results even for large values of
k whereas with the same sign as used by Beard and Walters
[11] his hybrid method rendered results up to k = 0.326 only.

From the works cited above, it can be understood that the
question of the velocity in the boundary-layer overshooting its
mainstream value still remains illusive. However, the above
studies have demonstrated that, as far as non-Newtonian flu-
ids are concerned, the method of solution has a profound
effect on the significance of numerical results. Having said
that it should be mentioned that all studies carried out thus far
in relation to the stagnation point flows of viscoelastic fluids
relied on the second-grade model to represent such fluids. The
use of second-grade model is questionable in that this sim-
ple rheological model is good only for slow flows depicting
small levels of elasticity. But there are many cases of practi-
cal interest in which the elasticity number is quite large [22].
Moreover, as mentioned above [19,20] there are some serious
concerns about the sign and magnitude of model parameters
appearing in a second-grade model such that the relevance of
results obtained using this model is suspected even at small
elasticity numbers.

Having realized the limitation of the perturbation method
and also the controversies around the second-grade model (not
mentioning the limitation of this rheological model to small
elasticity numbers), the next step would be to rely on more
realistic constitutive equations such as Maxwell, Oldroyd-B,
Phan-Thien Tanner, and Giesukus [8] to simulate stagnation
point flows of viscoelastic fluids. To the best of our knowledge,
these rheological models have never been tried in stagnation-
point flows of viscoelastic fluids. However, it should be con-
ceded that there are works dealing with these more advanced
models in other geometries. For example, Sadeghy and Sharifi
[23], and Sadeghy et al. [24] have studied Blasius and Sakiadis
flows of second-grade and upper-convected Maxwell mod-
els and noticed dramatic difference between their predictions
regarding wall shear stress and boundary layer thickness. Sim-
ilarly, Bhatnagar et al. [25] relied on Oldroyd-B model to
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