
Author's Accepted Manuscript

The effect of TiO₂ additive on sinterability and properties of SiC-Al₂O₃-Y₂O₃ composite system

Mahdi Khodaei, Omid Yaghobizadeh, Naser Ehsani, Hamid Reza Baharvandi, Alireza Dashti

ww.elsevier.com/locate/ceri

PII: S0272-8842(18)31502-5

DOI: https://doi.org/10.1016/j.ceramint.2018.06.073

Reference: **CERI18517**

To appear in: Ceramics International

Received date: 15 May 2018 Revised date: 6 June 2018 Accepted date: 9 June 2018

Cite this article as: Mahdi Khodaei, Omid Yaghobizadeh, Naser Ehsani, Hamid Reza Baharvandi and Alireza Dashti, The effect of TiO 2 additive on sinterability and properties of SiC-Al₂O₃-Y₂O₃ composite system, Ceramics International, https://doi.org/10.1016/j.ceramint.2018.06.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The effect of TiO_2 additive on sinterability and properties of $SiC-Al_2O_3-Y_2O_3$ composite system

Mahdi Khodaei^a, Omid Yaghobizadeh^{b*}, Naser Ehsani^a, Hamid Reza Baharvandi^a, Alireza Dashti^b

^aComposite Materials & Technology Center, Malek Ashtar University of Technology (MUT), Tehran, Iran.

^bDepartment of Materials Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

Abstract

In the current research, the effects of TiO₂ additive on mechanical and physical properties of SiC bodies, sintered by liquid phase methods were investigated. Al₂O₃ and Y₂O₃ were used as sintering-aids (10 wt. % in total) with an Al₂O₃/Y₂O₃ ratio of 43/57 to provide liquid phase during Sintering. TiO₂ was also used as the oxide additive with an amount ranging from 0 to 10 wt. %. After scaling and mixing the starting materials by a planetary mill, the obtained slurry was dried at 100 °C for four hours. The derived powders were finally pressed under a pressure of 90 MPa. The samples were then pyrolyzed and sintered at 600 °C and 1900 °C, respectively under argon atmosphere for 1.5 hours. Phase analysis showed no trace of TiO₂ after the sintering process, demonstrating the complete TiO₂ to TiC transformation. The results showed that an increase in TiO₂ content up to 5 wt. %, led an improvement in all the measured properties including the relative density, hardness, Young's modulus, bending strength, indentation fracture resistance and the brittleness factor, reaching to 96.2%, 24.4 GPa, 395.8 GPa, 521 MPa, 5.8 MPa.m $^{1/2}$ and 286.5 ×10 $^{-6}$ m $^{-1}$, respectively. However more than 5 wt. % additive resulted in a decrease in all the above-mentioned properties. Microstructural studies demonstrated that crack deflection and crack bridging were the major mechanisms responsible for an increase in the indentation fracture resistance.

Keywords: SiC-TiC composite; TiO₂ additive; Bending strength; Indentation fracture resistance; Hardness.

I. Introduction

Silicon carbide (SiC) is an important structural material. This material has found a wide range of applications including wear-resistant parts, refractories, electronic equipment, high-

^{*}Corresponding author. omidyaghobi1364@gmail.com

Download English Version:

https://daneshyari.com/en/article/7885980

Download Persian Version:

https://daneshyari.com/article/7885980

<u>Daneshyari.com</u>