
Author's Accepted Manuscript

 β -TCP scaffold coated with PCL as biodegradable materials for dental applications

YunZhi Shi, Jing Liu, Lingmin Yu, Li Zhen Zhong, Heng Bo Jiang

www.elsevier.com/locate/ceri

PII: S0272-8842(18)31290-2

DOI: https://doi.org/10.1016/j.ceramint.2018.05.142

Reference: CERI18317

To appear in: Ceramics International

Received date: 31 March 2018 Revised date: 8 May 2018 Accepted date: 16 May 2018

Cite this article as: YunZhi Shi, Jing Liu, Lingmin Yu, Li Zhen Zhong and Heng Bo Jiang, β -TCP scaffold coated with PCL as biodegradable materials for dental a p p l i c a t i o n s , *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.05.142

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

β-TCP scaffold coated with PCL as biodegradable materials for dental applications

YunZhi Shi^{a1}, Jing Liu^{a1}, Lingmin Yu^b, Li Zhen Zhong^c, Heng Bo Jiang^a*

^aSchool of Stomatology, Taishan Medical University, Tai'an, Shandong 271000, P.R.China

^bWeihai Stomatological Hospital, Weihai, Shandong 264200, P.R.China

^cThe First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R.China

*Corresponding author: Heng Bo Jiang (hengbojiang@vip.qq.com)

Abstract

Requirements for an ideal scaffold include biocompatibility, biodegradability, mechanical strength and sufficient porosity and pore dimensions. Beta tricalcium phosphate (β -TCP) has competent biocompatibility and biodegradability, but has low mechanical strength because of its porous structure. Polycaprolactone (PCL) is a biodegradable polymer with elastic characteristics and good biocompatibility. In this study, β -TCP/PCL composites were prepared in different ratio and their morphology, phase content, mechanical properties, biodegradation and biocompatibility were investigated. After coating, surfaces of β -TCP scaffolds were covered with the PCL while some of the pores were partially clogged. The compression and bending strength of β -TCP scaffolds were significantly enhanced by PCL coating. The

¹ Authors who contributed equally to this work: YunZhi Shi & Jing Liu

Download English Version:

https://daneshyari.com/en/article/7886036

Download Persian Version:

https://daneshyari.com/article/7886036

<u>Daneshyari.com</u>