
Author's Accepted Manuscript

Synthesis and Characterization of facile industrially scalable and cost effective WO₃ micronanostructures for electrochromic devices and photocatalyst

Md Rakibuddin, Haekyoung Kim

www.elsevier.com/locate/ceri

PII: S0272-8842(18)31519-0

DOI: https://doi.org/10.1016/j.ceramint.2018.06.088

Reference: CERI18532

To appear in: Ceramics International

Received date: 30 April 2018 Revised date: 5 June 2018 Accepted date: 11 June 2018

Cite this article as: Md Rakibuddin and Haekyoung Kim, Synthesis and Characterization of facile industrially scalable and cost effective WO₃ micronanostructures for electrochromic devices and photocatalyst, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.06.088

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and Characterization of facile industrially scalable and cost effective WO₃ micro–nanostructures for electrochromic devices and photocatalyst

Md Rakibuddin, Haekyoung Kim*

School of Materials Science and Engineering, YeungnamUniversity, Republic of Korea

Abstract

A novel strategy for the synthesis of tungsten trioxide (WO₃) micro-nanostructures by thermal annealing of tungsten powder under ambient conditions is reported. The assynthesized WO₃ samples are thoroughly characterized using powder X-ray diffraction, Xray photoelectron spectroscopy, transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) measurement. The TEM results show that the size of highly crystalline WO₃ particles can be tuned from micro to nano by simply varying the annealing temperatures. The BET results demonstrate that the surface area and pore size of the synthesized WO₃ decreases with increasing annealing temperatures. Furthermore, the WO₃ synthesized at 550 °C (WO-550) exhibits not only higher surface area and pore size, but also excellent photocatalytic activity as well as super hydrophilicity compared to the other prepared and commercially available WO₃. However, among the synthesized WO₃ particles, only WO-550 exhibits moderate electrochromic properties. Our strategy is facile, cheap, rapid, and highly reproducible for large-scale production, and the use of toxic precursors or additional capping agents is also eliminated. We believe that the synthesis of WO₃ by our method could have various practical industrial applications, and yield an excellent alternative to commercial WO3.

Keywords: Solid state synthesis, tungsten oxide, photocatalyst, electrochromic device, superhydrophilicity

Download English Version:

https://daneshyari.com/en/article/7886040

Download Persian Version:

https://daneshyari.com/article/7886040

<u>Daneshyari.com</u>