
Fin-and-tube condenser performance modeling
with neural network and response surface
methodology

Ze-Yu Li, Liang-Liang Shao, Chun-Lu Zhang *
School of Mechanical Engineering, Tongji University, Shanghai 201804, China

A R T I C L E I N F O

Article history:

Received 28 January 2015

Received in revised form 4 July 2015

Accepted 11 July 2015

Available online 14 July 2015

A B S T R A C T

This paper presents a new approach of combining response surface methodology and neural

network for performance evaluation of fin-and-tube air-cooled condensers which are widely

used in refrigeration, air-conditioning and heat pump systems. Box–Behnken design (BBD)

and Central Composite design (CCD) are applied to collect a small dataset for neural network

training, respectively. It turns out that 41 sets of data are collected for heating capacity and

refrigerant pressure drop, and 9 sets of data are collected for air pressure drop. Additional

2000+ sets of data are served as the test data. Compared with the test data, for the heating

capacity, the average deviation (A.D.), standard deviation (S.D.) and coefficient of determi-

nation (R2) of trained neural network are −0.43%, 0.98% and 0.9996, respectively; for the

refrigerant pressure drop, those are −2.09%, 4.98% and 0.996, respectively; and for the air

pressure drop, those are 0.11%, 1.96% and 0.992, respectively. Classical quadratic polyno-

mial response surface models were also included for reference. By comparison, the developed

neural networks gave much better results. Moreover, the proposed method can remark-

ably downsize the neural network training dataset and mitigate the over-fitting risk.

© 2015 Elsevier Ltd and International Institute of Refrigeration. All rights reserved.
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1. Introduction

Fin-and-tube refrigerant-to-air heat exchangers are widely used
in air conditioning, refrigeration and heat pump systems as

condensers and evaporators. Owing to the involvement of in-
tricate heat transfer processes and plenty of geometric
combinations, generalized physics-based tube-by-tube models
were recommended to design and evaluate fin-and-tube heat
exchangers (Domanski and Yashar, 2007; Jiang et al., 2006; Liu
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et al., 2004). However, this type of models usually suffers from
time-consuming simulations and fairly low robustness, par-
ticularly in modeling of complex system with multiple heat
exchangers.

In order for fast and robust simulations of heat exchanger
performance, many simple semi-empirical and empirical
models have been developed, especially for complex systems
with multiple heat exchangers. Among them neural network
(NN) models were widely employed because of its excellent ac-
curacy and generalization in nonlinear mapping. Yang (2008)
and Mohanraj et al. (2012) reviewed NN applications in thermal
engineering and in air-conditioning, refrigeration and heat pump
systems, respectively. As for the heat exchanger analysis, there
have emerged abundant researches for the past decades (Diaz
et al., 1999; Islamoglu, 2003; Pacheco-Vega et al., 2001b; Peng
and Ling, 2008; Wang et al., 2006; Xie et al., 2007; Yang et al.,
2014; Zhao and Zhang, 2010). In all related researches, good
agreement using neural network was always claimed. However,
researchers in this area may realize that there still exist several
severe difficulties in application.

Firstly, a large number of data are usually required for NN
training to achieve high accuracy as well as mitigate over-
fitting risk. Unfortunately, it is impractical to get sufficient data
from experiments due to high cost and time-consuming process.
As one alternative in Zhao and Zhang (2010), the authors used
limited condenser performance data validating a detailed model

to generate a bunch of data for NN training and testing. But it
is inapplicable when no detailed model is available. Moreover,
more than five hundred sets of data are needed as the train-
ing data to balance the accuracy and possible over-fitting risk
after a grueling trial-and-error process. As another alterna-
tive, Pacheco-Vega et al. (2001b) develop a NN model with limited
experimental data and use cross-validation method to find
regions where data are insufficient. It is uncertain how many
data points are missing or whether the addition of data in one
region will affect the accuracy in other region.

Secondly, very complicated NN configurations are chosen
for small number of experimental data, which greatly in-
creases over-fitting risk of neural network. In a case study done
by Sha (2007), it showed that less than 40 experimental data
are collected for NN training while the total unknown param-
eters in the network amount to 1966. The model is not
mathematically sound or justified if the unknown param-
eters are much more than the available data points. As a matter
of fact, such misuse of neural network is not uncommon.

Lastly, most researchers only considered the heat transfer
rate of heat exchanger and missed other important performance
parameters such as pressure drops (Islamoglu, 2003;
Pacheco-Vega et al., 2001a, 2001b).

In this work, we propose a new approach to model the fin-
and-tube condenser performance using RSM (Response Surface
Methodology) and neural networks. As one of the systematic
DOE (Design of Experiment) methodologies, RSM is usually
adopted to design experiments and establish a quadratic poly-
nomial model for function approximation. The hybrid method
of RSM and NN can be found in other fields. Betiku et al. (2014)
took the experimental data designed by RSM and divided them
into training and testing sets of NN, which shrinked the re-
sponse surface envelope and lead to higher risk of over-
fitting. Unlike them, we use all RSM designed experiments in
NN training and additional data for NN testing. Regarding the
condenser performance, in addition to the heating capacity,
both refrigerant side and air side pressure drops are taken into
account so that the NN model can fit well in system model-
ing. With limited but well-distributed data selected by RSM, the
training dataset as well as the over-fitting risk of neural network
can be remarkably reduced. The proposed model is also found
to be more accurate than the classical quadratic polynomial
response surface model.

2. Condenser performance virtual lab

The real experiment is time-consuming and costly. Since we
are trying to validate a new idea, instead of conducting a real
experiment, we use a well-validated tube-by-tube first-
principle condenser model in this study.The model is developed
by Liu et al. (2004), the same as the one used by Zhao and
Zhang (2010). Figure 1 shows the geometry of the fin-and-
tube condenser investigated in this work. The working fluid
is R410A.

Different from the condenser models for design purpose,
in this study, the neural network was developed for perfor-
mance evaluation of a designed condenser. This kind of simple
and robust model is more suitable for complex system

Nomenclature

b bias of neuron
g transfer function
m mass flow rate (kg s−1)
N total number of data samples
Nd number of training data
No number of hidden neurons
Nwb total number of weights and biases
Δpa pressure drop on air side (mmH2O)
Δpr pressure drop on refrigerant side (kPa)
Q capacity (kW)
T temperature (°C)
u connection weights between input and

hidden layers
V volume flow rate (m3 s−1)
w connection weights between hidden and

output layers
x input of neural network; variable

Greek symbols
β regression coefficient

Subscripts
a air
db dry-bulb
in inlet
out outlet/output layer
r refrigerant
s saturated
wb wet-bulb
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