
Author's Accepted Manuscript

Crystal structure and multiferroic behavior of perovskite YFeO₃

O. Rosales-González, F. Sánchez-De Jesús, C.A. Cortés-Escobedo, A.M. Bolarín-Miró

www.elsevier.com/locate/ceri

PII: S0272-8842(18)31321-X

DOI: https://doi.org/10.1016/j.ceramint.2018.05.175

Reference: CERI18350

To appear in: Ceramics International

Received date: 27 April 2018 Revised date: 19 May 2018 Accepted date: 20 May 2018

Cite this article as: O. Rosales-González, F. Sánchez-De Jesús, C.A. Cortés-Escobedo and A.M. Bolarín-Miró, Crystal structure and multiferroic behavior of perovskite YFeO₃, *Ceramics International*,

https://doi.org/10.1016/j.ceramint.2018.05.175

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCR

Crystal structure and multiferroic behavior of perovskite YFeO₃

O. Rosales-González¹, F. Sánchez-De Jesús¹, C.A. Cortés-Escobedo², A. M. Bolarín-Miró^{1,*}

¹Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma, 42184. Hidalgo, México. Tel. +527717172000 ext. 2280

²Instituto Politécnico Nacional, Centro de Investigación e Innovación Tecnológica, 02250.

Ciudad de México, México

*e-mail: anabolarin@msn.com

Abstract

We present a study of multiferroic properties of YFeO₃ synthesized by means of high-energy ball milling assisted by annealing at low temperature. Fe₂O₃ and Y₂O₃ powders were mixed in a stoichiometric ratio, milled for 5 h, pressed and annealed at temperature from 773 to 1073 K. Xray diffraction (XRD) analysis confirmed the formation of single-phase orthorhombic structure. Magnetic hysteresis loops, at room temperature, from vibrating sample magnetometry show the transition from ferromagnetic order to G-antiferromagnetic order, related to the transformation from amorphous to crystalline orthorhombic single phase. The value of Néel temperature of single phase YFeO₃ was obtained at 595 K, lower than previously reported. Dielectric behavior at room temperature of YFeO₃ single-phase sample shows a direct dependence with frequency of both dielectric constant and dielectric loss, in good agreement with Maxwell-Wagner effect. A fit made using Cole-Cole equation shows that the Low Temperature Dielectric Relaxation, LTDR, corresponds to a Debye-type relaxation. Finally, it was found that AC conductivity (σ_{AC}) increases linearly with frequency. All results show that YFeO₃ synthesized by high-energy ball milling assisted with annealing possess a multiferroic behavior.

Keywords: Yttrium ferrite, YFeO₃, multiferroic, mechanochemical processing, high-energy ball milling.

Download English Version:

https://daneshyari.com/en/article/7886208

Download Persian Version:

https://daneshyari.com/article/7886208

<u>Daneshyari.com</u>