
Author's Accepted Manuscript

Electrical characterization of $BaTiO_3$ and $Ba_{0.77}Ca_{0.23}TiO_3$ ceramics synthesized by the proteic sol–gel method

D.V. Sampaio, M.S. Silva, N.R.S. Souza, J.C.A. Santos, M.V.S. Rezende, R.S. Silva

www.elsevier.com/locate/ceri

PII: S0272-8842(18)31360-9

DOI: https://doi.org/10.1016/j.ceramint.2018.05.213

Reference: CERI18388

To appear in: Ceramics International

Received date: 12 March 2018 Accepted date: 24 May 2018

Cite this article as: D.V. Sampaio, M.S. Silva, N.R.S. Souza, J.C.A. Santos, M.V.S. Rezende and R.S. Silva, Electrical characterization of BaTiO₃ and Ba_{0.77}Ca_{0.23}TiO₃ ceramics synthesized by the proteic sol–gel method, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.05.213

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrical characterization of BaTiO₃ and Ba_{0.77}Ca_{0.23}TiO₃ ceramics synthesized by the proteic sol–gel method

D.V. Sampaio¹, M.S. Silva^{1,2}, N.R.S. Souza¹, J.C.A. Santos¹, M.V.S. Rezende¹, R.S. Silva¹

¹Grupo de Nanomateriais Funcionais, Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristóvão, SE, Brazil

²Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, 56000-000 Salgueiro, PE, Brazil

Abstract

In this work, we introduce a simple, low-cost, and ecofriendly method for producing barium titanate (BaTiO₃–BT) and barium calcium titanate (Ba_{0.77}Ca_{0.23}TiO₃–BCT) powders. The synthesis was performed by using a proteic sol–gel route which use coconut water in the polymerization step of the metallic precursor. We investigated the effects of the processing parameters with the density, microstructure, and (di)electric properties as sample quality indicators. The sintered ceramics exhibit single crystalline phase, relative density of 95%, a homogeneous microstructure, and an average grain size of 4 μ m. The respective dielectric constants of 1200 (BT) and 700 (BCT), measured at room temperature, and the activation energy values for the conductive process are according to those reported in the literature for conventionally prepared ceramics.

Download English Version:

https://daneshyari.com/en/article/7886387

Download Persian Version:

https://daneshyari.com/article/7886387

<u>Daneshyari.com</u>