

Review

Review of solar thermal air conditioning technologies

Ali Al-Alili^a, Yunho Hwang^{b,*}, Reinhard Radermacher^b

^a Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates ^b Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, 4164 Glenn Martin Hall Bldg., College Park, MD, USA

ARTICLE INFO

Article history: Received 15 May 2013 Received in revised form 23 November 2013 Accepted 26 November 2013 Available online 6 December 2013

Keywords: Solar Thermal Air conditioning Absorption Adsorption Thermomechanical

ABSTRACT

Solar cooling is a good example of addressing climate changes. In this paper, we provide overviews for working principles of solar thermally operated cooling technologies and reviews for advancements of such technologies from the most recent publications. Researches of solar absorption cycles investigated new refrigerant—absorbent pairs and various system configurations that could lead to increasing solar fraction and extending the cycle operation. Researches of solar adsorption cycles focused on the development and testing of various adsorbent—refrigerant pairs, improving cycle components, and increasing the system efficiency. For the ejector cycles, many studies focused on using computer models and experimental works to investigate the performance of the ejector and find the key parameters affecting its operation. Although many researches have conducted for solar thermal cooling technologies, their overall efficiencies are lower than that of the vapor compression cycles. Therefore, improving efficiency of solar thermally operated cooling technologies is an essential future research topic.

© 2013 Elsevier Ltd and IIR. All rights reserved.

Synthèse des technologies de conditionnement d'air solaire

Mots clés : Solaire ; Thermique ; Conditionnement d'air ; Absorption ; Adsorption ; Thermo-mécanique

1. Introduction

According to Internal Energy Agency (2012), the world energy demand will increase by 35 percent from 2010 to 2035. This increase is associated with world population growth and economic growth, especially in developing countries. Increased energy demands lead to more greenhouse gas emissions and accelerated global warming. In 2012, the average temperature across the U.S. was 3.2 °C higher than normal. Hotter weather and economic growths will result in more use of air conditioning systems, and contribute to accelerated energy demands. One positive trend against adverse effects of human activities is expansion of renewable

^{*} Corresponding author. Tel.: +1 301 405 5247; fax: +1 301 405 25025. E-mail address: yhhwang@umd.edu (Y. Hwang).

^{0140-7007/\$ –} see front matter © 2013 Elsevier Ltd and IIR. All rights reserved. http://dx.doi.org/10.1016/j.ijrefrig.2013.11.028

Nomenclature		SCE	specific cooling effect	
		SCP	specific cooling power	
Abbreviations		SDC	solid desiccant cycle	
A/C	air conditioner	SDCS	solar desiccant cooling systems	
ABC	absorption cycle	SHX	sensible heat exchanger	
ACF	activated carbon fiber	Sim	simulation	
ADC	adsorption cycle	SW	sensible wheel	
ARI	American Refrigeration Institute	TPL	triple pressure level	
C/R	collector/regenerator	TRNSYS	s transient systems simulation	
COP	coefficient of performance	VCC	vapor compression cycle	
CPC	compound parabolic concentrator	VMETS	variable mass energy transformation and storage	
CPVT	concentrating photovoltaic/thermal	Darametera		
DC	direct current	Paramet	els	
DEC	desiccant and evaporative cooling	P T	electric power, w	
DMEU	dimethylethylenurea	1	temperature, 'C	
DW	desiccant wheel	l tr	unickness, mm $3 h^{-1}$	
EC	evaporative cooler	V	volumetric now rate, m ⁻¹	
ETC	evacuated tube collector	W	numiany rano, gw kga	
EW	enthalpy wheel	ω	rotational speed, RPH	
Exp	experimental	Subscrip	Subscripts	
FPC	flat plate collector	а	air	
GA	Genetic Algorithm	ABC	absorption cycle	
GHGGWP Greenhouse GasGlobal Warming Potential		ADC	adsorption cycle	
HCFC	hydrochlorofluorocarbon	ads	adsorbent	
HFC	hydrofluorocarbon	amb	ambient	
HX	Heat eXchanger	С	cooling	
IEC	indirect evaporative cooling	comp	compressor	
LDC	liquid desiccant cycle	cond	condenser	
MGF	multi-function generator	dw	desiccant wheel	
MR	moisture removal	EJC	ejector cycle	
MRC	moisture removal capacity	evap	evaporator	
NTUOD	P number of transfer unitozone depletion potential	gen	generator	
PTC	parabolic trough collector	reg	regeneration	
PV	photovoltaic	VCC	vapor compression cycle	
PVT	photovoltaic/thermal collector	w	water vapor	
RPH	revolution per hour			
SCC	specific cooling capacity			

energy usages. Through the support of governmental policies in many countries, renewable energies, (particularly solar and wind energies) are expanding their primary energy use share of electricity generation. The Internal Energy Agency (2012) projects that renewable power generation will increase threefold from 2010 to 2035, reaching 31 percent of total power generation.

Meanwhile, one solution for addressing worldwide energy demand increase and climate changes will be utilizing renewable energies to providing cooling instead of fossil fuelconsuming air conditioning systems, making solar cooling technologies important for our future. Hwang et al. (2008) provided reviews of various solar cooling technologies based upon publications published until 2007 and classified them into three groups as shown in Fig. 1. Since utilizing solar electrical for cooling is very much straightforward, this paper provides overviews for working principles of solar thermally operated cooing technologies and reviews for advancements of such technologies based upon publications since 2008. As shown in Fig. 1, there are three main cycles in solar thermally operated cooling technologies: open cycles, closed cycles, and thermo-mechanical cycles.

2. Solar thermal cooling technologies

In this paper, these three types of systems are described starting from their working principles in order for all readers to understand the operation of the cycle. Then the updates on the technologies are summarized. It should be noted that this

Fig. 1 – Solar cooling technology options.

Download English Version:

https://daneshyari.com/en/article/788682

Download Persian Version:

https://daneshyari.com/article/788682

Daneshyari.com