

Available online at www.sciencedirect.com

ScienceDirect

Modelling, simulation and analysis of solar absorption power-cooling systems

Jesús López-Villada, Dereje S. Ayou*, Joan Carles Bruno, Alberto Coronas

Universitat Rovira i Virgili, CREVER — Group of Applied Thermal Engineering, Avda. Paisos Catalans, 26, 43007 Tarragona, Spain

ARTICLE INFO

Article history:
Received 11 July 2013
Received in revised form
31 October 2013
Accepted 4 November 2013
Available online 15 November 2013

Keywords: Solar thermal energy Combined power-cooling Absorption Ammonia

ABSTRACT

The main objective of this paper is to simulate different solar absorption power-cooling systems that uses ammonia based working fluid mixture to simultaneously produce cooling and mechanical power with a single system. The power and cooling cycles through absorption are of great interest because they can use low temperature thermal energy sources as solar energy with a higher versatility than the separated production of power and cooling (refrigeration) to cover the typical variable cooling and power demands of the building. In this study we have considered several system configurations based on the Goswami and single-stage combined absorption power and cooling cycles and different solar thermal technologies: evacuated tube, parabolic trough and linear Fresnel solar collectors. To compare the configurations we have performed the energy and exergy analysis for a specific case located in Sevilla (Spain) with a coordinates of 37°22′38″N 5°59′13″W using TRNSYS software as simulation tool.

© 2013 Elsevier Ltd and IIR. All rights reserved.

Modélisation, simulation et analyse du refroidissement de systèmes électriques fonctionnant grâce à l'absorption solaire

Mots clés : Energie solaire thermique ; Refroidissement combiné des systèmes électriques ; Absorption ; Ammoniac

1. Introduction

With rapid energy demand growth worldwide, human beings have to face more energy scarcity and environmental issues. The conventional technologies to produce useful energy products, such as electricity, normally results in considerable environmental pollution and non-renewable energy resource depletion. These interrelated challenges could be solved through the use of energy conversion enhancement, waste heat

recovery and renewable energy resource utilization. In that sense, Solar Absorption Power-Cooling Systems (SAPCS) are a good example to improve significantly the energy utilization efficiency using solar energy (Fig. 1). The SAPCS are based on a thermodynamic cycle that was developed for the simultaneous production of power and cooling from low-grade energy sources such as solar thermal, geothermal and industrial waste heat. The combined power and cooling cycles through absorption are of great interest because they can use the low grade energy sources as solar energy with a higher versatility than the

^{*} Corresponding author.

Nomenclature Varia			s and Parameters	
	.actur C	E	Solar energy received by solar collectors in a	
Abbreviations			defined period [kW h]	
127	Thermodynamic state points	Ex	Exergy [kW h]	
ABS	Absorber	h	Specific enthalpy [kJ kg ⁻¹]	
APC	Absorption Power and Cooling	ṁ	Mass flow rate [kg s ⁻¹]	
С	Cooler	Q	Thermal energy [kW h]	
CON	Condenser	<u> </u>	Thermal power	
DES	Desorber	SF	Solar fraction [–]	
ETC	Evacuated Tube Collector	t	Temperature [°C]	
EVA	Evaporator	T	Temperature [K]	
EXP	Expander	W	Mechanical work [kW h]	
FPC	Flat Plate Collector	Ŵ	Mechanical power	
H_2O	Water	z	Ammonia mass fraction [kg kg^{-1}]	
LFC	Linear Fresnel Collector	Subscripts		
LiBr	Lithium bromide	II	Second law	
$LiNO_3$	Lithium nitrate	APC	Absorption power and cooling	
MIX	Mass flow stream mixer	CW	Cooling water or dissipated heat	
NaSCN	Sodium thiocyanate	chw	Chilled water	
NH_3	Ammonia	e	Mechanical power	
PTC	Parabolic Through Collector	heat	Hot water	
REC	Rectifier	hs	Heat source	
REV	Refrigerant Expansion Valve	in	Inlet	
RSC	Refrigerant Sub-Cooler	out	Outlet	
SAPCS	Solar Absorption Power – Cooling System	ref	Refrigeration	
SH	Superheater	SAPCS	Solar Absorption Power-Cooling System	
SEV	Solution Expansion Valve	X	Denotes heat, cold or dissipated heat	
SHX	Solution Heat exchanger			
SP	Solution Pump	Greek sy	Greek symbols	
SPLIT	Mass flow stream splitter	η	Solar or effective first law efficiency	
SR	Split Ratio	ε	Effective exergy efficiency	
SSCA	Single-Stage Combined Absorption			

separated production of power and cooling (refrigeration) to cover the typical variable cooling and power demands of the buildings. In the particular case of the Mediterranean countries, this is especially important in spring and autumn, periods in which cooling demands could be very low and then most of the solar energy would be used to generate electricity.

One of the first combined absorption cycle proposed by Goswami (1995), combines the Rankine and absorption refrigeration cycles to provide mechanical power and cooling (sub-product) as useful outputs. Erickson et al. (2004) proposed an ammonia/water absorption cycle configuration which produces power and refrigeration interchangeably. A novel

form of absorption cooling cycles for combined production of power and refrigeration has been presented by Ziegler (2007). Three different cycle configurations (namely parallel, series and compound cogeneration configurations) for the combined production of power and refrigeration have been suggested by Zhang and Lior (2007). The authors developed the configurations through the integration of refrigeration and power generating systems based on ammonia/water working fluid mixture. And also, a detailed review of several cycle configurations proposed for the production of mechanical power and refrigeration, simultaneously and/or alternatively have been presented in the literature (Ayou et al., 2013a). Finally, Ayou

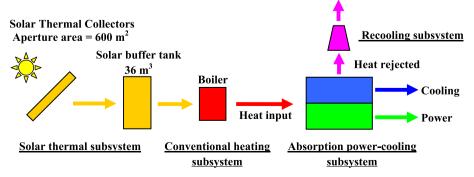


Fig. 1 – Block diagram illustrating the main components of the SAPCS.

Download English Version:

https://daneshyari.com/en/article/788692

Download Persian Version:

https://daneshyari.com/article/788692

<u>Daneshyari.com</u>