Author's Accepted Manuscript

Sol-gel synthesis and luminescence properties of $Ba_2SiO_4:Sm^{3+}$ nanostructured phosphors

Mehrdad Zahedi, S.A. Hassanzadeh-Tabrizi, A. Saffar-Teluri

 PII:
 S0272-8842(18)30555-8

 DOI:
 https://doi.org/10.1016/j.ceramint.2018.03.006

 Reference:
 CERI17643

To appear in: Ceramics International

Received date: 20 January 2018 Revised date: 28 February 2018 Accepted date: 1 March 2018

Cite this article as: Mehrdad Zahedi, S.A. Hassanzadeh-Tabrizi and A. Saffar-Teluri, Sol-gel synthesis and luminescence properties of Ba₂SiO₄:Sm³⁺ nanostructured phosphors, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Sol-gel synthesis and luminescence properties of Ba₂SiO₄:Sm³⁺

nanostructured phosphors

Mehrdad Zahedi^a, S.A. Hassanzadeh-Tabrizi^{a*}, A. Saffar-Teluri^b

^aAdvanced Materials Research Center, Department of Materials Engineering, Najafabad Branch,

Islamic Azad University, Najafabad, Iran

^bDepartment of Chemistry, Faculty of Science, Najafabad Branch, Islamic Azad University, Najafabad, Iran

scrip

Abstract

Ba₂SiO₄:Sm³⁺ nanostructure phosphors have been synthesized by a simple sol-gel method. Phase evaluation, structural characteristics and photoluminescence properties of the synthesized Ba₂SiO₄:Sm³⁺ powders were studied using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR), and photoluminescence spectroscopy (PL). X-ray diffraction results showed that all synthesized samples were single-phase barium silicate (Ba₂SiO₄) and samarium (Sm) ions were incorporated into the lattice of Ba₂SiO₄. Adding samarium to barium silicate changed the microstructure from vermicular to spherical structures. The Photoluminescence spectrum of Ba₂SiO₄:Sm³⁺ phosphors exhibited characteristic emission peaks at 562 nm which is due to the ⁴G_{5/2 →} ⁶H_{7/2} transition of samarium ions and corresponds to the orange region. The results showed that the barium silicate activated with 0.08 mol samarium exhibited the highest PL intensity. *Keywords: Barium silicate; Sol-gel synthesis; Samarium; Luminescence.*

^{*} Corresponding author. Tel.: +98 3142291111; fax: +98 3142291016.

E-mail address:, tabrizi1980@gmail.com, hassanzadeh@pmt.iaun.ac.ir (S.A. Hassanzadeh-tabrizi)

Download English Version:

https://daneshyari.com/en/article/7886926

Download Persian Version:

https://daneshyari.com/article/7886926

Daneshyari.com