
Author's Accepted Manuscript

Weakly agglomerated α -Al₂O₃ nanopowders prepared by a novel spray precipitation method

Quanbin Li, Le Zhang, Shuai Wei, Yikun Zhang, Rong Sun, Tianyuan Zhou, Wei Bu, Qing Yao, Zhigang Jiang, Hao Chen

www.elsevier.com/locate/ceri

PII: S0272-8842(18)30755-7

DOI: https://doi.org/10.1016/j.ceramint.2018.03.188

Reference: CERI17825

To appear in: Ceramics International

Received date: 11 February 2018 Revised date: 20 March 2018 Accepted date: 21 March 2018

Cite this article as: Quanbin Li, Le Zhang, Shuai Wei, Yikun Zhang, Rong Sun, Tianyuan Zhou, Wei Bu, Qing Yao, Zhigang Jiang and Hao Chen, Weakly agglomerated α -Al₂O₃ nanopowders prepared by a novel spray precipitation method, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.03.188

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Weakly agglomerated α-Al₂O₃ nanopowders prepared by a novel spray precipitation method

Quanbin Li^a, Le Zhang^{a*}, Shuai Wei^a, Yikun Zhang^a, Rong Sun^{b*}, Tianyuan Zhou^a, Wei Bu^a, Qing Yao^c, Zhigang Jiang^c, Hao Chen^a

^aJiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, P.R. China

^bGuangdong Provincial Key Laboratory of Materials for High Density Electronic Packaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China

SCIII

^cSchool of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China

zhangle@jsnu.edu.cn (Le Zhang)

rong.sun@siat.ac.cn (Rong Sun)

*Corresponding authors

Abstract

In this paper, weakly agglomerated and well dispersed α -Al $_2$ O $_3$ powders were synthesized by a novel spray precipitation method. It was demonstrated that the asprepared powders exhibited better dispersity than powders from conventional precipitation due to the increased phase contact and reaction area during the precipitation process. The effects of different titration ways, calcination temperature and holding time on the morphology, phase composition and sintering behaviour of Al $_2$ O $_3$ powders were systematically investigated. Weakly agglomerated and well crystallized α -Al $_2$ O $_3$ powders were obtained when the as-prepared precursors were calcined at 1150 °C for 2 h in air. The average particle size of α -Al $_2$ O $_3$ powders with higher sintering activity was approximately 68.6 nm, and the specific surface area was above 22.4 m 2 ·g $^{-1}$.

Keywords

Spray precipitation; Calcination temperature; Holding time; α-Al₂O₃ powders

1. Introduction

 α -Al₂O₃ powders have attracted much attention because of their excellent mechanical and chemical performance [1-3]; these powders have been widely used in many fields such as optical ceramics, refractory materials and circuit substrates [4-6].

Download English Version:

https://daneshyari.com/en/article/7886986

Download Persian Version:

https://daneshyari.com/article/7886986

<u>Daneshyari.com</u>