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A B S T R A C T

Low-loss (Zn1-xNix)ZrNbTaO8 (0.02≤ x≤ 0.10) ceramics possessing single wolframite structure are initiatively
synthesized by solid-state route. Based on the results of Rietveld refinement, complex chemical bond theory is
used to establish the correlation between structural characteristics and microwave performance in this ceramic
system. A small amount of Ni2+ (x=0.06) in A-site with the fixed substitution of Ta5+ in B-site can effectually
raise the Q× f value of ZnZrNb2O8 ceramic, embodying a dense microstructure and high lattice energy. The
dielectric constant and τf are mainly affected by bond ionicity and the average octahedral distortion. The
(Zn0.94Ni0.06)ZrNbTaO8 ceramic sample sintered at 1150 °C for 3 h exhibits an outstanding combination of mi-
crowave dielectric properties: εr =27.88, Q× f=128,951 GHz, τf = –39.9 ppm/°C. Thus, it is considered to be
a candidate material for the communication device applications at high frequency.

1. Introduction

Owing to the ever-growing frequency of communication applica-
tions such as 5 G and satellite navigation systems, low-loss microwave
dielectric ceramics are becoming increasingly important.
Corresponding to the low loss, high Q× f value that signifying the
enhancement of frequency selectivity in 5 G applications is necessary.
Moreover, ceramics with high Q× f value always present a relatively
lower dielectric constant and impede the miniaturization of devices for
5 G requirements. On the contrary, due to the vibration in crystal, high
dielectric constant will lead to a relatively lower Q× f value.
Consequently, the research on the ceramics with the optimum combi-
nation of high Q× f value and medium dielectric constant is ongoing
[1–3].

Recently, as a member of rutile-like structural compounds, new
wolframite-structured ZnZrNb2O8 ceramic with high Q× f value
(~ 61,000 GHz) and appropriate dielectric constant (~ 30) has received
much more interests and made it very promising for microwave ap-
plications [4–11]. However, considering the demands of ever-higher
frequency in communication applications, the Q× f value of
ZnZrNb2O8 ceramic should be further enhanced to ensure the high-
precision of microwave devices, and such research is certainly needed.
In general, crystal structure is the key factor to determine the micro-
wave dielectric properties of ceramics. Considering that the crystal of
monoclinic wolframite structural ZnZrNb2O8 has two different cation
positions [5], Zn2+/Zr4+ in A-site and Nb5+ in B-site are deemed to be

hexa-coordinated with oxygen ions and respectively occupy the
Wyckoff positions of 2f and 2e. Afterwards, oxygen ions can be classi-
fied in two kinds, O(1) and O(2), holding the 4g positions. And, O(1) is
respectively connected to one cation in B-site with short bond and two
cations in A-site with relatively longer bonds, whereas O(2) is bonded
with the rest cations. Previously, conventional ion substitution in A-site
by Ni2+ or B-site by Ta5+ for improving Q× f value was somewhat
effective [6,7]. And, for further optimization, co-doping occurred in A-
site and B-site simultaneously may be feasible.

In this work, we modify the ZnZrNb2O8 ceramic by Ni2+ and a
fixation content of Ta5+ using solid state reaction method, obtaining a
single wolframite phase. In the formative (Zn1-xNix)ZrNbTaO8

(0.02≤ x≤ 0.10) ceramics, based on the variations of Ni2+ content,
crystal structure and microwave characteristics are systematically in-
vestigated. The influence factors of microwave dielectric properties in
(Zn1-xNix)ZrNbTaO8 ceramics, including bond ionicity, lattice energy
and octahedral distortion, are comprehensively discussed.

2. Experimental procedure

The (Zn1-xNix)ZrNbTaO8 (0.02≤ x≤ 0.10) ceramics are synthe-
sized through solid state reaction method. The raw materials are high-
purified oxide powders (99.9%) of ZnO, NiO, ZrO2, Nb2O5 and Ta2O5.
The start materials are proportionately ball milled after pretreatment,
and the medium is ethanol. Through desiccation, the particles are cal-
cined at 900 °C, and then pressed into cylinders with a size of 10mm
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and 5mm for diameter and thickness, respectively. The green bodies
are sintered at a range of 1130–1200 °C for 3 h, and the heating speed is
controlled as 10 °C/min.

The phase compositions of samples are indexed by an X-ray dif-
fractometer (Rigaku, D/MAX-2500, Tokyo, Japan) using Cu-Kα radia-
tion with a scanning speed of 4°/min. The microstructures are analyzed
using a scanning electron microscopy (SEM, PHILIPS XL30 ESEM,
Netherlands). Rietveld refinement is used to analyze the structural
variation of Ni2+ substitution and the ZnZrNb2O8 reported by Ramarao
is the starting model [5].

The microwave dielectric properties of (Zn1-xNix)ZrNbTaO8 cera-
mics are measured on a network analyzer (8720ES, Agilent, Santa
Clara, CA). Herein, dielectric constants are measured using Hakki-
Coleman method under TE011 resonant mode [10]. Unloaded quality
factors are measured by the cavity method under TE01σ mode [11]. The
τf is calculated by Eq. (1):
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where f1 and f2 are the TE01δ resonant frequency of the (Zn1-xNix)
ZrNbTaO8 ceramics at 25 °C and 85 °C, respectively.

3. Results and discussion

Fig. 1 illustrated the X-ray diffraction patterns of the (Zn1-xNix)
ZrNbTaO8 ceramics sintered at 1150 °C for 3 h. All these compositions
formed in a solid solution with monoclinic wolframite structure (in-
dexed as ZnZrNb2O8, JCPDS #48-0324), occupying the space group P2/
c (C2 h

4). With the content of Ni2+ increased, pure wolframite phases
were visibly found with no generation of secondary phase. It could be
seen that ions co-doping had no effects on the phase compositions,
combining the illustration in Fig. 1, Ni2+ and Ta5+ could completely
dissolve in this structure with Ni2+ in A-site and Ta5+ in B-site, re-
spectively. In order to clarify the effects of Ni2+ ionic substitution for
Zn2+ ionic on the structural variation of (Zn1-xNix)ZrNbTaO8 ceramics,
relevant parameters including scale factors, background, zero point,
unit-cell parameters, half-width, temperature factors atomic, positional
coordinates, asymmetry parameters were refined step-by-step in-
dependently using FullProf Suite software. The refinement patterns of
(Zn1-xNix)ZrNbTaO8 ceramics were shown in Fig. 2, and the results
were presented in Table 1. With the increasing of Ni2+ content, lattice
parameters and cell volumes slightly decreased as a result of the Ni2+

(0.69 Å, CN=6) with smaller coordination radius replaced the Zn2+

(0.74 Å, CN=6) in A-site [12]. However, as the content of Ni2+

reaching to 0.06mol, the lattice parameters began to increase that

might be determined by the change of microstructures.
Fig. 3 demonstrated the SEM micrographs of (Zn1-xNix)ZrNbTaO8

specimens sintered 1150 °C for 3 h. In the SEM images, for all the
compositions of (Zn1-xNix)ZrNbTaO8 ceramics, compact grain structures
were obtained with no pores and no impurities, which was in ac-
cordance with the XRD patterns. As the content of Ni2+ increased, very
small grains in 1–3 µm were firstly observed at x=0.02, then, the grain
size obviously increased with ever more substitution of Ni2+ until
x= 0.06. Thus, during the process of crystal growth, a certain amount
co-introduction of Ni2+ and Ta5+ had not yet destroyed the crystal-
lization of the former wolframite structure, to some extent, could pro-
mote the densification of (Zn1-xNix)ZrNbTaO8 ceramics.

Table 2 illustrated the relative densities and microwave dielectric
properties of the (Zn1-xNix)ZrNbTaO8 ceramics sintered at 1150 °C for
3 h. As the content of Ni2+ varied from 0.02 to 0.10, with high relative
densities (≥95%) in all samples, the dielectric constant of the samples
firstly decreased and then increased. Meanwhile, there was an opposite
tendency for Q × f value, and the τf kept a trend of moving positively.
From these results, the specimens of (Zn0.94Ni0.06)ZrNbTaO8 showed a
good combination of microwave performance as a high Q × f value of
128,951 GHz, appropriate εr of 27.88 and a τf value of −39.9 ppm/°C.

Fig. 4 illustrated the variation of theoretical polarizability and di-
electric constant in (Zn1-xNix)ZrNbTaO8 ceramics at 1150 °C. In general,
the decisive factors that affected the dielectric constant could be boiled
down to the polarizabilities, relative density，the tilting and distortion
of the oxygen octahedron in crystal [13–16]. Herein, owing to the high
relative density (≥ 95%) obtained from the XRD analysis, it was not the
absolute factor that determined the dielectric constant. Actually, it was
mainly depended on the dielectric polarizabilities and the character-
istics of structure. Based on the additive rule, the theoretical dielectric
polarizability (αD) of (Zn1-xNix)ZrNbTaO8 ceramics was evaluated using
Eq. (2) [17]:
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Therefrom, with the x value increased from 0.02 to 0.06, the di-
electric constant decreased from 28.97 to 27.88 linearly, which could
be ascribed to the lower polarization of Ni2+ ions (1.23 Å3).
Reasonably, polarization was proved as one important factor that in
relation to the dielectric constant.

However, with the x value increased further, the dielectric constant
slightly increased which were not in good agreement with αD. This
result might be connected with the microstructural changes of (Zn1-
xNix)ZrNbTaO8 ceramics. Moreover, in consideration of the bond ioni-
city, dielectric constant could be calculated as followed [18]:

Fig. 1. XRD patterns for (Zn1-xNix)ZrNbTaO8 sintered at 1150 °C for 3 h, where
x=0.02, 0.04, 0.06, 0.08, 0.10.

Fig. 2. The profile fits for the Rietveld refinement of (Zn0.94Ni0.06)ZrNbTaO8

ceramic.
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