
Author's Accepted Manuscript

Structural properties, electronic structures and optical properties of WB_2 with different structures: A theoretical investigation

Dan Liu, Yonghua Duan, Weizong Bao

www.elsevier.com/locate/ceri

PII: S0272-8842(18)30770-3

DOI: https://doi.org/10.1016/j.ceramint.2018.03.203

Reference: CERI17840

To appear in: Ceramics International

Received date: 12 February 2018 Revised date: 22 March 2018 Accepted date: 22 March 2018

Cite this article as: Dan Liu, Yonghua Duan and Weizong Bao, Structural properties, electronic structures and optical properties of WB₂ with different structures: A theoretical investigation, *Ceramics International*, https://doi.org/10.1016/j.ceramint.2018.03.203

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural properties, electronic structures and optical properties of WB_2 with different structures: A theoretical investigation

Dan Liu, Yonghua Duan*, Weizong Bao

Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

*Corresponding author. duanyh@kmust.edu.cn (Y.H. Duan)

Abstract

The structural, electronic and optical properties of six WB₂ diborides with hP3, hP6, hP12, oP6, hR9 and hR18 structures were systematically investigated using the first-principles calculation based on density functional theory. The optimized atomic coordinates and lattice parameters agree well with the corresponding experimental and theoretical results. All WB₂ are energetically stable, and hP6-WB₂ has the best phase stability and hP3-WB₂ shows the worst phase stability. The results of density of states and the charge density differences indicate that WB₂ have the strong W-B and B-B covalent bonds. The hardness was obtained from the Mulliken population. The predicted values of absorption coefficient $\alpha(\omega)$ and reflectivity $R(\omega)$ reveal that the laser with a longer wavelength is recommended during the synthesis of WB₂ coatings

Download English Version:

https://daneshyari.com/en/article/7887048

Download Persian Version:

https://daneshyari.com/article/7887048

<u>Daneshyari.com</u>