
Author's Accepted Manuscript

The formation and properties of Sialon-ZrN composites produced by reaction bonding combined with post gas-pressure sintering

Li Yin, Mark Ian Jones

www.elsevier.com/locate/ceri

PII: S0272-8842(18)30679-5

DOI: https://doi.org/10.1016/j.ceramint.2018.03.112

Reference: CERI17749

To appear in: Ceramics International

Received date: 14 February 2018 Revised date: 10 March 2018 Accepted date: 13 March 2018

Cite this article as: Li Yin and Mark Ian Jones, The formation and properties of Sialon-ZrN composites produced by reaction bonding combined with post gaspressure sintering, *Ceramics International*,

https://doi.org/10.1016/j.ceramint.2018.03.112

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The formation and properties of Sialon-ZrN composites produced by reaction bonding combined with post gas-pressure sintering

Li Yin, Mark Ian Jones*

Department of Chemical and Materials Engineering, Faculty of Engineering, University of Auckland, Auckland 1023, New Zealand

*Corresponding author. Postal Address: 2-6 Park Avenue - Bldg 529, Level 1, Room 131, 2-6 Park Avenue Grafton, Auckland, 1023, New Zealand Tel./fax: +64 9 923 4548. mark.jones@auckland.ac.nz

Abstract

Sialon-ZrN composites have been fabricated by a combination of reaction bonding and post-gas-pressure sintering. Composites with different amount of ZrN were post sintered at 1600, 1700 and 1800 °C under a nitrogen pressure of 0.7 MPa for 6h. The results showed that mass loss due to decomposition increased with increasing sintering temperature. The mass loss at 1600 and 1700 °C was comparable, and below 3% even for the highest ZrN content of 50 wt%, but ranged between 6-9% for samples post sintered at 1800 °C with 10-50 wt% ZrN. Composites sintered at 1700 °C had the highest relative density (>97%) and lowest open porosity (<2%), and this was independent of ZrN content. The incorporation of the ZrN particles was observed to have an effect on the mechanical properties of the composites. The highest hardness (16.05±0.17 GPa) was observed for the composite sintered at 1700 °C with 20 wt% ZrN but decreased with higher ZrN contents, due to a weak bonding between the ZrN particles and the Sialon matrix. The fracture toughness showed a continuous increase with

Download English Version:

https://daneshyari.com/en/article/7887342

Download Persian Version:

https://daneshyari.com/article/7887342

<u>Daneshyari.com</u>