ARTICLE IN PRESS

Ceramics International xxx (xxxx) xxx-xxx

ELSEVIER

Contents lists available at ScienceDirect

Ceramics International

CERAMICS INTERNATIONAL

journal homepage: www.elsevier.com/locate/ceramint

Thermal properties of RE_2AlTaO_7 (RE = Gd and Yb) oxides

Chen Xiaoge^a, Zhang Hongsong^b, Liu Yanxu^b, Zhao Yongde^c, Ren Bo^b, Tang An^b, Lu Kui^{d,*}

^a Department of Civil Engineering, Henan University of Engineering, Zhengzhou 451191, PR China

^b Department of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, PR China

^c Institute of Chemistry Henan Academy of Science, Zhengzhou 450001, PR China

^d School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou 450044, PR China

ARTICLE INFO	A B S T R A C T
<i>Keywords:</i> Thermal barrier coatings Rare earth-aluminum-tantalum oxides Thermal conductivity Thermal expansion coefficient	In the current paper, the synthesis of RE ₂ AlTaO ₇ (RE = Gd and Yb) oxides was performed through a high- temperature sintering method using Gd ₂ O ₃ , Yb ₂ O ₃ , Al ₂ O ₃ and Ta ₂ O ₅ as raw chemicals. The phase-structure, micro-morphology and thermal-physical properties of RE ₂ AlTaO ₇ (RE = Gd and Yb) oxides were analyzed. The RE ₂ AlTaO ₇ (RE = Gd and Yb) oxides exhibit single pyrochlore-type crystal-structure. Compared to Yb ₂ AlTaO ₇ , the Gd ₂ AlTaO ₇ has greater thermal conductivity owning to relatively weaker phonon scattering. Because of higher electro-negativity of Yb, the Yb ₂ AlTaO ₇ has lower coefficient of thermal expansion than Gd ₂ AlTaO ₇ . The RE ₂ AlTaO ₇ (RE = Gd and Yb) oxides also exhibit no phase-transition between ambient and 1473 K

1. Introduction

The yttria-stabilized zirconia (YSZ)- based thermal barrier coatings (TBCs), have been used to provide thermal-insulation protection for key-metal parts of gas turbines [1–3]. However, YSZ can not undertake long-term applications due to its inherent phase-transformation above 1473 K. Thus, exploration about novel candidates for TBCs is of great importance [4–6]. For thermal barrier coatings, the candidates should possess low thermal conductivity, appropriate coefficient of thermal expansion (CTE) and remarkable high-temperature phase-stability [7–9].

Recently, a few of compounds containing tombarthite-aluminum elements have received great attentions because of their eminent thermal physical properties. For example, the average CTE for Y₂O₃- Al_2O_3 -SiO₂ is about 5 × 10⁻⁶/K, its thermal conductivity (1.3 W/m K) is almost constant over the entire temperature range [10]. The Y₄Al₂O₉ shows low Young's modulus and thermal conductivity [11], and its thermal-conduction ability can be weakened by metal-cation doping [12]. The excellent bonding-strength and thermal-insulation capability for Y₃Al₅O₁₂-Al₂O₃ coatings can be put down to its good inoxidizability [13]. Ren et al. evaluated that the LaCuAl₁₁O₁₉, $La_2Zr_2O_7$ -LaCuAl₁₁O₁₉ and La₂Zr₂O₇-LaAlO₃ have remarkable thermal-insulation ability from 473 K to 1473 K [14]. Compared to YSZ, the Ln₂SrAl₂O₇ oxides have greater volume thermal expansion coefficients and better heat-insulation ability [15]. The LnMgAl₁₁O₁₉ ceramics prepared by spark plasma sintering exhibit relatively high CTEs, and their thermal conductivities at 1473 K decrease with elevating tombarthite-cation radius [16]. Wan et al. indicated that the Ba₂DyAlO₅ has more-excellent thermo-physical performance [17]. The average thermal conductivity and CTE of La₂AlTaO₇ are 1.71 W (m K)⁻¹ and 8.2 × 10⁻⁶ K⁻¹ [18].

However, the thermal properties of RE_2AITaO_7 (RE = Gd and Yb) oxides have not been reported openly up to now. In this paper, the RE_2AITaO_7 (RE = Gd and Yb) oxides were obtained through solid state reaction method, the crystal-type and thermo-physical properties were studied.

2. Experimental

In this manuscript, $Gd_2O_3(purity \ge 99.9\%)$, $Yb_2O_3(purity \ge 99.9\%)$, $Al_2O_3(analytically pure)$ and $Ta_2O_5(purity \ge 99.9\%)$ were selected as original chemicals. The weighted powders were fully mixed for 6 h using a milling pot with ethanol. After sufficient drying and sieving, the powder mixtures were uniaxially formed into disc samples at 10 MPa, and then the disc samples were further densified via coldisostatic pressing under 200 MPa. The pressed samples of RE_2AITaO_7 (RE = Gd and Yb) oxides were firstly sintered two times at 1673 K for ten hours accompanied by middle regrinding, and the ultimate products were pressureless sintered at 1873 K for ten hours.

The crystal-structure of RE_2AlTaO_7 (RE = Gd and Yb) oxides was identified via the X-ray diffractometry (XRD) (Bruker, D8 Advance). The actual density (ρ) test of final bulk samples was performed via Archimedes method. The surface micro-morphology observation of RE_2AlTaO_7 (RE = Gd and Yb) oxides was executed by scanning electron microscopy (SEM, FEI Quanta-250). According to the reference

E-mail address: zhsandchen@126.com (L. Kui).

https://doi.org/10.1016/j.ceramint.2018.03.113

Received 27 January 2018; Received in revised form 13 March 2018; Accepted 13 March 2018 0272-8842/@ 2018 Published by Elsevier Ltd.

^{*} Corresponding author.

Fig. 1. XRD spectra for RE_2AlTaO_7 (RE = Gd and Yb) oxides.

specific heat capacities of Gd₂O₃, Yb₂O₃, Al₂O₃ and Ta₂O₅, the specific heat capacity (C_p) of RE₂AlTaO₇ (RE = Gd and Yb) oxides was computed via Neumann-Kopp rule. The CTE measurement for RE₂AlTaO₇ (RE = Gd and Yb) samples about 4 mm × 4 mm × 14 mm was carried out via a high-temperature dilatometer (Netzsch DIL 402C). The thermal diffusivity (λ) of the samples about Φ12.7 mm × 1 mm was determined by laser-flash technology on the automated LFA-427 instrument(Netzsch) in high-purity argon atmosphere. The thermal diffusivity measuring experiments were carried out in the temperature range of 493–1273 K. The thermal conductivity (k) of the bulk ceramics was calculated by Eq. (1) [16], which was further corrected by Eq. (2) [16]. Where k_0 and φ represent the actual thermal conductivity and porosity of RE₂AlTaO₇ (RE = Gd and Yb) oxides.

$$k = C_p \cdot \rho \cdot \lambda \tag{1}$$

$$\frac{k}{k_0} = 1 - (\frac{4}{3})\phi$$
 (2)

3. Results and discussion

Fig. 1 presents the XRD patterns of RE₂AlTaO₇ (RE = Gd and Yb) oxides. It can be observed that the number and location of X-ray diffraction peaks for obtained bulks resemble that of Sm₂Zr₂O₇, which confirms a single phase composition with pyrochlore structure [19]. Compared to Gd₂AlTaO₇, the XRD peaks of Yb₂AlTaO₇ shift to higher angle because of minor radius of ytterbium-cation. The synthesized RE₂AlTaO₇ (RE = Gd and Yb) oxides can be regarded as the A₂B₂O₇-type oxides, whose crystal structure is also governed by ionic-radius ratio (r_A/r_B) of A-location and B-location. For A₂B₂O₇ oxides, the ionic radius ratio (r_A/r_B) between 1.46 and 1.78 helps to form stable pyrochlore-type structure, and the ionic-radius ratio below 1.46 can result in fluorite-type structure [20]. The r_A/r_B values of sintered samples can be obtained by Eq. (3), where $r(Ln^{3+})$ represents the ionic radius of Gd³⁺, Yb³⁺ and Al³⁺. The ionic radii of Gd³⁺, Al³⁺, Yb³⁺ and Ta⁵⁺ are 0.1053 nm, 0.0985 nm, 0.0535 nm and 0.068 nm, respectively.

$$r_A/r_B = \frac{2[r(\text{Ln}^3)]}{r(Al^{3+}) + r(Ta^{5+})}$$
(3)

From Eq. (3), it can be obtained that the r_A/r_B values of Gd₂AlTaO₇ (1.73) and Yb₂AlTaO₇ (1.62) are in the range of 1.46–1.78. The computed result about ionic-radius ratio implies that the synthesized ceramics exhibit typical pyrochlore lattice, which agrees well with XRD spectrum displayed in Fig. 1.

Fig. 2 displays the representative micro-morphology of RE_2AITaO_7 (RE = Gd and Yb) oxides. Clearly, the microstructure for the sintered samples is relatively dense, and the relative densities of Gd₂AITaO₇ and

Fig. 2. Surface micro-morphology of sintered samples (a) Gd₂AlTaO₇ (b) Yb₂AlTaO₇.

Yb₂AlTaO₇ ceramics are 92.2% and 94.6%, respectively. The grain interfaces for Gd₂AlTaO₇ and Yb₂AlTaO₇ are spotless, no other materials or un-reacted raw reactants can be found. The crystal particle size of Gd₂AlTaO₇ is about 1–3 μ m, and the crystal particle size of Yb₂AlTaO₇ is within 0.1–3.5 μ m. From Fig. 3 and Table 1, it can be noted that the element compositions of the synthesized ceramics are consistent with the chemical formulas. The atomic ratio of n_{Gd}:n_{Al}:n_{Ta} or n_{Yb}:n_{Al}:n_{Ta} is close to 2:1:1, which is in agreement with chemical-formula of Gd₂AlTaO₇.

From Fig. 4, the calculated specific heat capacity of RE_2AITaO_7 (RE = Gd and Yb) is in proportion to temperature, which can be fitted by Eqs. (4) and (5).

$$C_p(Gd_2AlTaO_7) = 0.38999 + 0.00006 \times T - 6280.84262/T^2$$
(4)

$$C_p(Yb_2AlTaO_7) = 0.39277 + 0.00006 \times T - 6929.44142/T^2$$
(5)

The thermal diffusivity of RE_2AITaO_7 (RE = Gd and Yb) oxides tested via the laser-flash method is presented in Fig. 5. As can be noted from Fig. 5, the thermal diffusivity of RE_2AITaO_7 (RE = Gd and Yb) ceramics is inversely proportional to temperature up to 1073 K, which exhibits typical phonon thermal-conducting behavior [21]. However, above 1073 K, the thermal diffusivity of Gd_2AITaO_7 enhances slightly due to the influence of radioactive transport through the sample. The measured thermal diffusivities of Gd_2AITaO_7 and Yb_2AITaO_7 are within 0.45–0.91 mm²/s, 0.32–0.38 mm²/s, respectively.

The final computed thermal conductivity for RE_2AITaO_7 (RE = Gd and Yb) oxides is presented in Fig. 6. Clearly, the thermal conductivity of RE_2AITaO_7 (RE = Gd and Yb) oxides decreases with raising temperature before 1073 K. The elevated thermal conductivity above

Download English Version:

https://daneshyari.com/en/article/7887344

Download Persian Version:

https://daneshyari.com/article/7887344

Daneshyari.com