Author's Accepted Manuscript Improved resistance to thermal fatigue of active metal brazing substrates for silicon carbide power modules using tough silicon nitrides with high thermal conductivity Hiroyuki Miyazaki, You Zhou, Shoji Iwakiri, Hideki Hirotsuru, Kiyoshi Hirao, Shinji Fukuda, Noriya Izu, Hideki Hyuga www.elsevier.com/locate/ceri PII: S0272-8842(18)30369-9 DOI: https://doi.org/10.1016/j.ceramint.2018.02.072 Reference: CERI17474 To appear in: Ceramics International Received date: 24 November 2017 Revised date: 16 January 2018 Accepted date: 7 February 2018 Cite this article as: Hiroyuki Miyazaki, You Zhou, Shoji Iwakiri, Hideki Hirotsuru, Kiyoshi Hirao, Shinji Fukuda, Noriya Izu and Hideki Hyuga, Improved resistance to thermal fatigue of active metal brazing substrates for silicon carbide power modules using tough silicon nitrides with high thermal c o n d u c t i v i t y , *Ceramics*International, https://doi.org/10.1016/j.ceramint.2018.02.072 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ### **ACCEPTED MANUSCRIPT** Improved resistance to thermal fatigue of active metal brazing substrates for silicon carbide power modules using tough silicon nitrides with high thermal conductivity Hiroyuki Miyazaki^{a,*1}, You Zhou^a, Shoji Iwakiri^b, Hideki Hirotsuru^b, Kiyoshi Hirao^a, Shinji Fukuda^a, Noriya Izu^a, Hideki Hyuga^a ^aNational Institute of Advanced Industrial Science and Technology (AIST) Nagoya 463-8560 ^bCeramic Research Dept., Denka Co., Ltd. Omuta-shi, Fukuoka prefecture 836-8510, Japan *Corresponding author. Phone: +81-52-736-7486, Fax: +81-52-736-7406, E-mail address: h-miyazaki@aist.go.jp #### **Abstract** The effect of temperature cycling from –40 to 250 °C on active metal brazing (AMB) substrates for power modules was investigated using newly developed silicon nitride ceramics with both high thermal conductivity of 140 W m⁻¹ K⁻¹ and superior fracture toughness of 10.5 MPa·m^{1/2}. Other types of AMB substrates made of AlN or Si₃N₄ were also tested for comparison. Both visual inspection and acoustic scanning microscopy (ASM) observation of the new Si₃N₄-AMB substrates after 1000 cycles revealed almost no cracks. In contrast, the Si₃N₄-AMB substrates with lower fracture toughness experienced crack initiation beneath the corner of the copper plate. The degradation in the bending strength after 1000 cycles was negligible for the new Si₃N₄-AMB substrates, whereas the ¹ Postal address: 2266-98, Shimo-shidami, Moriyama-ku, Nagoya 463-8560, Japan #### Download English Version: # https://daneshyari.com/en/article/7887384 Download Persian Version: https://daneshyari.com/article/7887384 <u>Daneshyari.com</u>